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1. Introduction
Let © be a bounded domain of R™. For the simplicity of the numerical analysis we
will assume that Q is a polygonal domain. Let w; € R, ¢ =1,...,k, k > 2, and consider

a function ¢ : R™ — R such that

p(w;))=0 Vi=1,...,k, (1.1)

p(w)>0 Vw#w;, i=1,...,k (1.2)

In physical terms, ¢ is some energy that vanishes at wells w;. Let us denote by 0N the
boundary of Q and by Ty some portion of 9 of positive measure.

Let a be in the convex hull of the w;’s, such that

a#tw; Yi=1,...,k. (1.3)
If V, denotes some space of functions v such that

v(z)=a-z on T (1.4)

(a - z denotes the scalar product of a and z) we would like to consider the problem

Inf /ﬂ H(Vo(z)) da. (1.5)

As we will see, this problem in general does not admit a minimizer, i.e., the infimum of
(1.5) is not attained for some u € V,. In other words minimizing sequences of (1.5) do
not converge in a strong enough topology to allow their limit points to be a minimizer. In
such an event the problem seems to lack interest. However, it turns out that it arises in
numerous physical settings. For instance (see [B.J.1], [B.J.2], [Er.], [F.1], [F.2], [J.K.], [K.],
[Ko.], [S.]), some crystals have their deformations governed by energies ¢ experiencing

some potential wells w;. For such a crystal, even if no unique equilibrium is available,
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there is some organized way to reach its lowest energy level. In terms of problem (1.5) the
minimizing sequences have some pattern that we would like to investigate here. Note that
we are considering here the so called scalar case —i.e. the w;’s are vectors and not matrices.
So, in particular hyperelasticity for ordered material seems to be beyond our scope. We
will comment on that at the end of the paper. We refer also the reader to [C.C.K.] for

results in this direction.

Some similar problems have been first considered by C. Collins, D. Kinderlehrer and M.

Luskin in one dimension (see [C.K.L.], [C.L.1] - [C.L.4]).

One can add also to the energy functional defined in (1.5) some kind of weak coerciveness

by considering instead as in [B.M.]

/ﬂ o(Vo(z)) + (v —a-z)* dz. (1.6)

In this event, the second term under the integral suffies to force the pattern of the min-
imizing sequences. We refer the reader to [C.C.] for a complete analysis of this problem.
On the other hand, when no such a term is introduced, the oscillations of the minimiz-
ing sequences are forced, as we will see, only by the boundary condition that has to be

matched.

The paper is divided as follows. In section 2 we estimate in terms of the mesh size
the infimum (1.5) using Lagrange elements of type P;. We give also an existence result for
the approximated problem. In section 3 we show that (1.5) does not admit in general a
minimizer. We also analyse the Young measure associated to the problem proving in par-
ticular its uniqueness. In section 4 we investigate the pattern of the minimizing sequences.

In section 5 we comment on some numerical computations for these types of problems.



2. Energy estimate on a finite element space

In what follows we will always assume
a=0. (2.1)

Indeed, there is no loss of generality in doing so. To see this, remark that if we set
v =u—a-z then

/ng(Vu(x)) dz = /9 o(Vo(z) + a)dz (2.2)
thus minimize the left hand side of (2.2) on V, reduces to minimize the right hand side of
(2.2) on V;. We did not yet define V, but, as we will see, for the problem that we have in
mind, we just need V, to be a space of functions equal to a - z on I’y and containing the
piecewise affine functions (by a piecewise affine function we mean a continuous function

affine on simplices covering Q). But then we are led to a problem identical to the one we

had with now

¢(w) = p(w +a)
i.e. with a function ¢ having w; — a as wells, with 0 in the convex hull of these wells (since
clearly a in the convex hull of the w;’s is equivalent to 0 in the convex hull of the w; — a’s).

Let 7 a triangulation of Q with simplices of diameters less then h. If K is some simplex

of 7 denote by P;(K) the space of polynomials of degree 1 on K. Set
V2 ={v: Q = R, continuous | v, € P{(K) VK€, v=00nTo}

(v| denotes the restriction of v to K).
Then one has:
Theorem 1: Assume that ¢ is bounded on bounded subsets of R™. Then there ezists a

constant C such that

En= Inf | o(Vo(z))dz < C-h'/2 (2.3)
vEV,? Q



Remark 1: Note that Vu(z) and thus ¢(Vv(z)) are constant on every simplex of T so
that no further assumption on ¢ is needed for the integral of (2.3) to make sense.
Proof of Theorem 1: Clearly since a = 0 belongs to the convex hull of the w;’s one

can find w;’s, that we will denote by wy,...,w,, p > 2, such that
w; —wy, t¢=2,...,p are linearly independent (2.4)

and such that for some unique «; € (0,1)

P P
Za,-w,- =0 , Zai =1. (25)
=1 =1
Set

wi(z) = ,7&1 w; -z + h® (2.6)

1=
where A denotes the minimum of two functions and « is some number in (0,1). Since
a € (0,1) it should be noticed that
h® >> h. (2.7)

First, remark that

wp(z) < h® Va. (2.8)

Indeed if not we would have for some 2
wicx>0 Vi=1,...,p

and by (2.5)
P

Z oW T = 0

i=1
hence a contradiction.
Moreover, this “hat” function wj has exactly p different slopes, i.e. for every 7 the set of
z such that wy(z) = w; - z + h* has a non empty interior. Indeed, otherwise for some i,
we would have

Wip T+ h* > w;-xc+h* Vi, Va,
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thus
P P
Zaiwio T > Zaiwi =0 Va.
1=1 =1

It follows that

w,'o-:IJZO V.’L‘

which is impossible unless w;, = 0 = a which has been excluded.

Consider the set
Sp = {z € R"|wy(z) > 0}

={reR"w;-z+h*>0 Vi=1,...,p}.
Clearly S} is the intersection of p half spaces and thus a convex domain having p edges.
For instance when n = 2, if p = 2 then S} is a strip, if p = 3 S}, is a triangle. When n = 3,
if p=2, Sy is a strip, if p = 3, S}, is a cylinder with a triangular basis, if p = 4, S), is a
tetrahedron...

Let us denote by W the subspace of R™ spanned by the w;’s. Then, S, "W is a (p — 1)-

simplex with vertices vg,vy,...,v,_1. Note that the functions w; - z are constant on any
subspace orthogonal to W. For any z = (z1,...,2p—1) € ZP™! set
p—1

wh,(z) = wa(e = Y 2i(vi — vo)) (2.9)

i=1
Clearly, wy, , is a piecewise affine function, non negative only on each of the sets
p—1
Shz=Sh+ Y zi(vi — o). (2.10)
i=1
Note that these subsets are disjoint or have in common a subspace parallel to W+, the

orthogonal of W. Set

up(z) = zG%/P"l wh () (2.11)

where V denotes the supremum of functions. Then uy is a piecewise affine function equal

to wy,, on Sy .. Note that for a given z the supremum in (2.11) is taken only on a finite
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number of z such that S . neighbours z. Now clearly one has

lur(z)| < Ch® (2.12)
for some constant C. Moreover, at every point z of in R™ one has

Vup(z) = w; (2.13)

except on the edges of the function u;. To obtain a function uj which is affine on each
simplex of 7 we modify uj, in the following way. On each simplex of 7 where u; has some
edge we replace it by the affine function that coincides with uj on its vertices. Clearly,

(2.12) is preserved. Now the volume of the simplices where this modification occurred is

no more than

h - (n - l-area of the edge of uy) (2.14)

(the edge of uj is cutting one simplex at a time, and any dimension of this simplex in

bounded by k).
Denote by N(h®) the number of Sy . covering 2. By a scaling argument one has
n — 1-area of the edge of up = C.N(h®)(h*)P~2
< C'N(1)(h*)P~2 /(R )P~
<Ch™“.

Hence, by (2.14) the volume where the modification has occurred is less then

C.hl-e (2.15)

1.e.
Vup, = w; (2.16)
except on a part of n-dimensional volume C - hl=e,
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To match the boundary condition we modify u, once more by replacing u by the affine

function which coincides with
dist (., 0Q)aupy — dist (.,00) (2.17)

at the node of 7 (dist (z,0) denotes the distance from = to 92). Let us still denote this
last function by uj. Clearly the gradient of up coincide with the previous gradient of up

except (see (2.12)) on a neighbourhood of T' of volume
CloQYh™ (2.18)

Thus, see (2.13) - (2.17), we have obtained a function up € V¥ such that (2.13) holds
except on a set S of volume

Ch'~ 4+ C|00|h*
where, of course, u; has a bounded gradient. Thus we have

/Q o(Vun()) dz = /Q AT de /S o(Vun(z))de

S C(hl—a + ha)

where C is some constant independent of h.

We thus obtain, since « € (0,1), and h could be assumed to be less then 1
En < / e(Vup(z)) dz < 2CR™N(1—)
Q

Now, the function min(1 — a, ) is maximum for a = % which gives the result.

Remark 2: Of course, for some triangulation, the rate of h'/2 is not sharp, but this rate
holds for any ¢ and any triangulation. In particular we did not assume the triangulation
to be quasi-uniform.

Remark 3: In the case of a quasi-uniform mesh and a slow growth of ¢ at infinity one

can improve our estimate. Indeed assume that for some r < 1 one has

le(O)l < ClEI" VEER™ (2.19)
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Then, instead of using (2.17) to match the boundary condition we can set uj, to 0 on the

nodes of 02 and leave it unchanged elsewhere.

Due to (2.12) the gradient of u, is bounded by Ch®/h on a neighbourhood of 92 of

thickness h. So, by (2.19), (2.15) we obtain
/ ©(Vup(z))dz < ChRDT L Cp1—2
Q
< Chmin(l—a,l—r(l—a)).

The function in the exponent of h is maximum when

l-a=1-r(l-a) & a=1-

which leads to
E, < / @(Vup(z)) dz < ChTE (2.20)
Q
which is slightly better than (2.3)
Remark 4: When r — 0 the rate kT is almost sharp in the sense that, in general, one

cannot expect a rate better than h.

Indeed, consider for instance

n=2 Q=(-1,41)?, T, =09,
w; = (——1,0), Wy = (1’0)’
@(€) =Min|€ — w;|* for [ —w;| <1, i=1,2,

e()>1 for [E—wi|>1 or [£—we|>1.

Assume that our mesh is quasi-uniform. If up = 0 on (—1,+1) x {1} then necessarily

3—"} = 0 on the triangles touching this part of the boundary and one obtains

/ @(Vup(z))dz > measure of these triangles
Q

= Ch.



and thus the rate of convergence cannot be better than A in general.

It could be useful to know that the approximated problem

Inf [ o(Vu(z))dz (2.21)
veV? Jq

admits a solution. In this spirit we can prove:

Theorem 2: Assume that ¢ is continuous and that

p(€) = 400 when |¢] = 400 (2.22)

then there exists up € V) such that

/Lp(Vuh(x))dmz Inf | o(Vou(z))dz. (2.23)
Q vEVh0 Q

Proof: A function vs € V) is completely determined by its value at the nodes of the

triangulation. Let X denote the vector of the values of v, at the nodes not on I'y. Then

/ o (Voi(2)) da
Q

becomes a continuous function F of X that we have to minimize over R where N is the

number of nodes ouside T'y. If we can show that
F(X)= / e(Vop(z))dz — +oo (2.24)
Q

when |X| — 400 we are led to minimize F, which is continuous, over a compact set of RN
and we are done. If |X| — 400, then one of the value of vj, at some node N; must go to

+00. Then due to the 0 boundary condition one must have on some simplex

vp(N;)
> —_—
Voul 2 Gt (Ve o)
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(Since we do not assume that  is convex, dist (N;,Ig) is here the length of the shortest
path linking N; to I'¢ and passing through the different nodes).

Hence if we denote by K such a simplex

/Q P(Vou(2)) dz > [K|o(Von,)

where |K| denotes the measure of K and (2.24) follows by (2.22).

3. Oscillation phenomenon

In order to obtain a unique pattern for the minimizing sequences of (1.5) we have to

limit the number of wells and assume that ¢ has at most n wells i.e.:
2<k<n. (3.1)
Recall that a = 0 belongs to the convex hull of the w;’s. It will be useful to assume:
w; —wy, ©=2,...,k are linearly independent (3.2)

and for some a; € (0, 1) one has

k k
Zaiwi =0 , Zai =1. (3.3)
i=1 i=1

It results from (3.1) and the fact that a belongs to the convex hull of the w;’s that the
w;’s span a subspace W which is of dimension strictly less than n. This fact, as we will see

later, is crucial. Let us denote by W+ the orthogonal complement of W. We will assume

that

VzeQ,3azg€ely suchthat (z,20) CQand z—z9 € Wt (3.4)

((z,z0) denotes the segment with end points z and z,. Note that this assumption is

automatically satisfied when I’y = 09).
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Under the above assumptions we can prove
Theorem 3: Let us assume that ¢ is bounded on bounded subsets of R*. Let Vy C

W11(Q) be a space of functions vanishing on Ty, containing the continuous piecewise

affine functions. If (3.1), (8.4) hold then the problem

In ¢(Vo(z))dz (3.5)
veEVL JQ
cannot have a minimizer.

Remark 5: W11(Q) is the usual Sobolev space of functions in L!(Q) with first derivatives

in L'(Q)—(see [G.T]). In the integral (3.5) we make the convention that

/Q o(Vo(z))dz = 400 (3.6)

if o(Vo(z)) € L'(R). Recall that ¢ is a nonnegative function and this convention avoids
imposing some growth conditions on ¢.
Proof of Theorem 3: Let vy, ..., an orthonormal basis of W+. Due to (3.4) we have

a Poincaré inequality of the type

/ lo(2)|dz < C / V,o(z) e Vo € Vi (3.7)
Q Q

(V, denotes the vector of components aiw, | | the Euclidean norm).
By Theorem 1 one has

£ Vo(z))dz = 0.
oof [ #(Vo(e))de

If for some u € V)

/ e(Vu(z))de =0
Q

then by (1.1), (1.2) one has:

Vu(z) =w; #0 a.ein ) (3.8)
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: du __ .
hence since By, = Vu -y

Vou(z) =0 a.ein Q.

Then from (3.7) applied to u one deduces
u(z) =0 a.ein Q. (3.9)

But then Vu = 0 and a contradiction with (3.8).
So, in the absence of minimizers we turn to the study of minimizing sequences. As we
will see, they have a common pattern which is explained by the uniqueness of the Young

measure associated to them. More precisely, recall that if u, € WH*°(Q),

lunloo, [[Vurlleo <C (3.10)

where C is some constant independent on h, then u, defines a Young measure in the
sense that there exists a subsequence of uy, that for simplicity we will still denote by up,
a parametrized probability measure v, on R", such that for any bounded Carathéodory

function F(z,¢) one has

%E/(ZF(m,Vuh(x))dmz/(l/Itn F(z,\)dvy(N)dz. (3.11)

(We refer for instance to [B.], [C.K.], [K.], [K.P.1], [K.P.;], [D.], [Ev.], [T.], [V.] for this
question, recall that | |, denotes the usual L* norm-see [G.T.] for more information on
Sobolev spaces).

Then we can prove:
Theorem 4:  Assume that (8.1)-(3.4) hold, ¢ continuous. Let up be a minimizing
sequence of (3.5). If up defines a Young measure v, —i.e. if (8.10) holds- then one has

necessarily

k
vy = Zaiéwi a.e z € (3.12)

=1
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where the a;’s are the constants appearing in (3.3) and &, denotes the Dirac mass at w;.

Proof: Up to a subsequence one can assume that one has for some u € W1 *°(Q)
up — v uniformly in (3.13)

Vup — Vu  in L*®(Q) weak — *. (3.14)

((3.14) means that each component of the gradient is converging in L>°(§2) weak —*). Let
vz be a Young measure defined by uy.

From (3.11) applied with F(z,£{) = ¢(€) we have

0= lim /Q o(Vup(z)) dz = /Q / @A) dvz(Nde.

It results that

/ P(A)dvg(A) =0 a.ein Q.
Hence, by (1.1), (1.2) the support of v, has to be contained in the w;’s for a.e z, i.e.
k
ve =Y Bi()bu- (3.15)
1=1

Applying (3.11) again we have from (3.15)

/4 14
[ W@z = [ [D(Vun(a) 5 s L[ [0 d

k ¢
N / Y B @)D (wi- v de =0
Q=1 j=1
since the v;’s belong to w+.

Recalling (3.7) and (3.13) we obtain

/ lu(z)| dz = lim/ lun(z)| dz = 0.
Q h—0 Jq

Hence u = 0.
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Let B be a ball included in €.

Since the limit of any subsequence of uj, is 0, (see (3.14), we have when h — 0
Vup — 0in L®(Q) weak — *.

From (3.11) applied with F(z,{) = Xp()¢ (this function is not bounded in &, but the

gradient of uy is!) we obtain

0= lim/ Vuh(w)da::/ Adv.(\)dz (3.16)
h=0Jp B JR»

By (3.15) this reads

0= i/}gﬂi(wdx-w,-.

=1

Hence, by (3.3) and the uniqueness of barycentric coordinates

ﬁ/}gﬂi(w)dxzai Vi=1,...,k.

(Recall that since v, is a probability measure Zle Bi(z) = 1). Since this is true for any

B it results from the Lebesgue differentiation theorem that
Bi(z)=a; aeinQ, Vi=1...k

and thus (3.15) reads

k
vy = Za,ﬁwi a.e in Q.
i=1

This shows that v, is necessarily the homogeneous Young measure (3.12) (see [K.P.1]) and

concludes the proof.

Remark 6: The construction of u; given in section 2 provides a minimizing sequence

such that (3.10) holds.
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To end this section we would like to discuss the necessity of our assumptions. For
instance in theorem 3, the assumption (3.1) cannot be relaxed. Indeed consider the one

dimensional case and assume for instance that ¢: R — R satisfies

p(-1)=¢(1)=0 , ¢()>0 VE#+L (3.17)

Take 2 = (0,1), T'o = 09, a = 0. So, we are in the case n = 1, k = 2. Then clearly any

piecewise affine function such that
u'(z)=+1 , u(0)=u(l)=0

satisfies
0=/g0(u'(:1:))dm= Inf /(,o(v'(a:))d:c
Q v€Vo Ja

where V} is any space containing the piecewise affine functions vanishing on 02. So, the
problem (3.5) admits infinitely many minimizers. The situation is exactly the same iﬁ
higher dimensions. Consider for instance the case n = 2, k¥ = 3. Assume that {2 is an
equilateral triangle centered at 0 and of sides of length 1. Consider the “hat” function u

defined on this triangle i.e. such that
u(0)=1, u=0 on 0N

and interpolates linearly between these points. Let w;, wy, ws the different gradients of
this function and ¢ a function vanishing on these w;’s and positive elsewhere and satisfying

also the assumptions of theorems 3 and 4. Clearly u is a minimizer of

/Q o(Vo(z)) dz

on Wy'(R). So the problem (3.5) admits in this case a minimizer. Now, if we split Q

into equilateral triangles (not necessarily of the same size) and if on each of these triangles
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we define u to be equal to 0 on the boundary and to the length side at the center, u
interpolating linearly between these points then u is an other minimizer and we get that
way infinitely many of them.

To see now the necessity of (3.4) we can argue for instance in dimension 2 with
Q=(-1,1)% Ty = {-1} x (-1,1), wy = (1,0), wz = —w;. Then any function depending
on z only, vanishing on I'y and climbing or going down with a slope +1 is a minimizer.

A similar example can provide an understanding of the necessity of (3.2), (3.3) in

theorem 4. Indeed assume

Q=(-1,1)> , To=00 , wi=(L,0) , wy=-w; , wy=—2w

then
— l + l 0= 2 + 1
= 2w1 2w2 or = 3w1 3w3
and
1 1 2 1
Vg = "2'5101 + 56102 or Vg = §6w2 + §6w3

are two admissible Young measures for the problem (3.5) and indeed (see the proof of
Theorem 1 for some insight on this question) one can construct minimizing sequences

corresponding to both of them.

4. Probabilistic analysis of oscillations

In this section we would like to analyse the behaviour of the minimizing sequences of
(1.5). As we will see, under the assumptions of theorem 4, they have a common pattern.
In particular in order to minimize the energy they are choosing their gradients around each
of the wells with a probability which tends to be constant. We will give an estimate of this
probability in terms of h when the minimizing sequence considered is in V}?. First let us

make precise our assumptions.
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In all this section we will assume that (3.1)-(3.4) hold. Moreover, we denote by 7 the

projection on the w;’s (see [C.K.L.]) i.e. 7 denotes the function 7 defined by

m(§) = wi
where w; is the well of smallest index i such that (4.1)
€~ wil = Minlé — w|

(] | denotes the Euclidean norm of R"). The function 7 takes only a finite number
of values -i.e. the wy’s. Moreover, it is clearly a Borel function so that if {(z) is any
measurable function, 7(§(z)) will be measurable.

Then, we will assume that there exists A > 0, p > 1 such that

e(§) 2 A€ — ()

(4.2)
=A-Min|{—w;|? VE€R"
Now, let us denote by R some positive number such that
1 . C,
R<§|w,~—wj| Vi, g=1,...,k 1 #7. (4.3)

v E ' and 1 1s some subset of {} we will denote by B;" or 5;*(v) (we will drop
If Whoe(§) and if B i b fQ ill d by BE or BR il d

sometimes for convenience the dependence in v) the set
BR = BR(v) = {¢ € B | Vv(z) € B(w;, R)} (4.4)
where B(w;, R) is the ball of center w; and radius R in R™ —i.e.
B(w;,R) = {w € R" | |w—w;| < R}.

If | | denotes the Lebesgue measure in R™, |BE|/|B| represents the probability for v to

have its gradient on B in B(w;, R). For convenience we introduce also the notation
k
BE = B\ 5] BE. (4.5)
1=
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We are first going to assume that B is a Lipschitz domain for which the inequality

/ lo(2)| do(z) < C / ol 4+ [V, o(2)|dz ¥ v € WH(Q) (4.6)
oB B

holds (see (3.7) for the meaning of V). It is easy to see that (4.6) holds for instance for a
Lipschitz domain of 2 such that the outward normal n(z) satisfies: there exists i € 1,...,¢

and a constant ¢ such that
In(z)-vil>¢ o—ae z€IB. (4.7)

Recall that vy,..., v, denotes an orthonormal basis of W+,

We will set
E(v) = /S;cp(Vv(:r)) dz. (4.8)

Then we can prove:
Lemma 1: Assume that (3.1)-(8.4) hold. Moreover assume that @ satisfies (4.2). If B 1is

a Lipschitz domain such that (4.6) holds, then one has for some constant C

k
S IBE()|wi| < C - B(v)? (4.9)
i=1
for any v € WPP(Q), v vanishing on Ty.
(Recall that | | denotes the Lebesgue measure or the usual Euclidean norm in R™)

Proof: Note first that

k
R'LU': ™ v X
;wil ; ]UBE (Vo(z))d

. 1
t

— /B m(Vo(z)) dz — /B _ m(Vo(z))dz (4.10)

er

_ /B 7(Vo(z)) — Vo(z) de + /B Vo(z) de — / w(Vo(e) do

exr

d=efI1 + I + I.
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To estimate I note that by Hélder’s inequality and (4.2)
012 [ 15(Vo(@) - Vo(z)|do
B

< (/B |7(Vo(z)) — Vou(z)|P dx) ’ |B|1_% (4.11)
< AF|B['TFE(v)3.

To estimate I, one applies the divergence theorem to get
I, = / Vo(z)de = / v(z)n(z)do(z)
B 8B
where n(z) denotes the outward normal to dB. Hence, by (4.6), (3.7):
BI< [ oo do(a)
OB
< [ 1@+ V(o) da
B

< /Q [o(@)| + |V, 0(z)] do

SC/ |V, v(z)| dz
Q

(4.12)

On the other hand from (4.2) we deduce
9(§) 2 A-Min £ —wil” 2 A-[€ = Pw(E)I
where Py denotes the orthogonal projection on W. Due to the equality

¢ = Pw(&) + Pw(£)

one deduces

(&) 2 A-[Pw(E)P V€ e R (4.13)

Since
¢

Py (Vo(z)) = E(Vv(m) V) - Y

=1
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we obtain for almost every z

p(Vo(2)) 2 A - [V,o(2)?

and integrating (see (3.6)) we obtain

/ e(Vo(z))dz > A - / [Vyu(z)|Pdz Vove,.
Q Q

Hence by the Holder Inequality and (4.12)

1
P

IL| < C|Q'~? (/ IV, 0(z)? d:n)
Q
< CATF QI P E()?.

To estimate I3, note that

BI< [ In(Vo@)lds

< Max |w;| |BE |.
1

Now, clearly

R|BE| < /R |7(Vu(z)) — Vo(z)| dz

< /B |7(Vo(z)) — Vou(z)| dz.

Hence, using Holder’s inequality
R < 1 Bl_.L A~
Bzl < 1Bl
and thus
1 1 .
[I5] < Max jw;| = |BI' 77 A
i R

Combining (4.10), (4.11), (4.15), (4.17) we obtain clearly

k
1Y IBR@)lwi | < CE(v)?
1=1

which is (4.9).
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(4.15)

(4.16)

(4.17)



As a consequence we have:

Theorem 5:  Assume that (8.1)-(3.4) hold. Moreover assume that ¢ satisfies (4.2). If

B is a Lipschitz domain such that (4.6) holds then for some constant C

BR
‘ ,._lz_(”)l <C-EWw)? Vi=1,...k (4.18)

|B|

for any v € WHP(Q), v vanishing on T.

Proof: Let M denote the n + 1 X k matrix

M=[11 1’“]. (4.19)

Since the vectors w; — w; are linearly independent this matrix has rank k. In particular,
the system

My=5b (4.20)

has at most one solution which, when it exists, is given by
y=(MTM)*MTb

(MT denotes the transpose of M) and one has

[yl < 1M M) M| b (4.21)
where || || denotes the matrix norm corresponding to the Euclidean norm.
Since
k k
Zaiwi =0 , Zai =1
=1 =1
one has

k
2 (eIl - | B Z 1B w:

> (aulBl - B = B

(4.22)

>
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Hence, the vector with entries a;|B| — |Bf| satisfies (4.20) for b given by the right hand
side of (4.22). The result follows then by combining (4.21), (4.9) and (4.16).

As a consequence of this result we see that for any minimizing sequence vj of (3.5)

one has
|BE ()]

—a; Vi=1,...,k
|B|

at a rate proportional to E(v;)!/?. In particular if one sets
E, = vgg;? e(Vo(z))dz (4.23)

one has:

COROLLARY 1: Under the assumption of Theorem 5, if B is a Lipschitz domain such

that (4.6) holds and if vy € V) is such that
E(vy) < 2E)

then there exists a constant C such that

| B (vn)l

<Ch% V1,...k 4.24)
B (

oy —

Proof: This results from Theorem 5 and (2.3).
Remark 7: Note that this estimate holds in particular for any minimizer up € V} of
(2.23). In the case where some low growth condition on ¢ is assumed then the rate h7
can be improved (see Remark 3).

We now assume that B is any Lipschitz domain of {2 and we use the same notation
than before in particular for BR. Then we have:
Lemma 2: Assume that (3.1)-(3.4) hold. Moreover assume that ¢ satisfies (4.2) with
p > 1. If B is a Lipschitz domain included in Q0 then there exists a constant C such that:

k 1
1Y IBR(w)| wil < C - (E(v)? + E(v)% - [[v]l7, 5) (4.25)

=1
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for any v € WYP(Q), v vanishing on Ty.

(q denotes the conjugate ezponent of p, ||v||1 B = ([glv(@)|P + |Vou(z)|P dm)%)
Proof: One proceeds as in Lemma 1 —i.e. one writes (4.10). There is no change in the

estimate of I, I3, and (4.11) and (4.17) hold. To estimate I, one notices as before that

1| = ‘ | v@n(z)do(a)

< /63 lv(z)| do(z). (4.26)

Now, for any function in W!!(B) one has for some constant C

| w@ldst@) <0 [ @)+ Vo) da.
OB B

Applying this inequality to v = v? we get

/ |v(:1:)|"da(a:)§C/ Wl + (p— DloP~2 Vo] de. (4.27)
oB B

Now, by Holder’s inequality

1 1
/ [v|P~!| V| dz < (/ lv|P da:) (/ |Vol|P d:c)
B B B

where ¢ is the conjugate exponent of p —i.e. % + % = 1. From (4.27) we deduce

/aB v(2)|P do(z) < C (/B lo]? dz)% : (/B ol? + |vv|de)%

for some constant C.

Recalling (4.26) and using Holder’s ineqality we obtain

1

i< [ el deta) < josr ([ o io(@))’

(|0B| denotes the n — 1 dimensional Hausdorff measure of dB). Hence for some positive

constant C
P
Li<C ( / |v|"dw) ol 5. (4.28)
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Now, due to (3.4) we have a Poincaré Inequality of the type

/ |v|P dz < C/ |V, v(z)|? dzx
Q Q

for any v € W1P(Q), v vanishing on T,.

Hence by (4.14)

/B|v|vdxg/ﬂ|v|f’dxgc-/ﬂ¢(vv(x))dx

and (4.23) becomes

1 1
L < C-E(v)?|vll{ , p-

One concludes then as in lemma 1.
As a conssequence we can prove
THEOREM 6: Assume that (8.1)-(8.4) hold. Moreover assume that ¢ satisfies (4.2)

with p > 1. Then if B is a Lipschitz domain included in 2 one has for some constant C

B (v)]

B] <C-(E(v)? +E®)?) Vi=1,...,k (4.29)

for any v € WP(Q), v vanishing on Ty.
Proof: Denote by | |1, the usual norm on W'?(Q). One argues exactly as in Theorem

5 but one replaces now (4.9) by (4.25). Noting first that

|v|1,p,B < |v|1,p

one obtains

k N N
| Y IBE()] wil < C(E()? + oI} ,B(v)7) (4.30)

i=1

Now, for any v € WP, vanishing on Iy one has

/ [v|P dz < C’/ |Vou|P dz
Q Q
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and thus
1

by <€ ([ 19 dz)’
<cC (/ﬂ Vo — W(Vv)l"d:c)% +C (/Q |7r(Vv)|pd:c)%

< C1E(v)? + C,
where C'y, and C; are constants independent of v. (Recall that |7(Vv)| < Max; |w;]).

Thus

» >
I’vlf,p < C]E(U)P + C,

for some other constants Cj, C; and (4.30) becomes
k 1 1 4
| - IBR@)] wil < C(B()3 + E(v) + B(v)7*77)
1=1
Hence (4.29) follows, since % + % =1

As a consequence we see that any minimizing sequence vp, of (3.5) is such that

R
BRI

i Y,k
| B|

at a rate proportional to E'(vh)?]? (ﬁ < %)

In particular one can show

COROLLARY 2: Under the assumptions of Theorem 6, if B is a Lipschitz domain

included in Q and if v, € V) 1s such that
E(Uh) S 2-Eh

then there ezists a constant C such that

_ |BE(vn)]

5] <Chwi Vi=1,...,k. (4.31)

a;

Proof: This is an immediate consequence of (2.3) and Theorem 6. Of course we assume

here that h is small —i.e. h < 1.
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Remark 8: This estimate holds in particular for any minimizer up € V)0 of (2.23). See
also remark 7.

Remark 9: To see how minimizing sequences have their gradients that approach the
Young measure v, defined by (3.12) one could evaluate both against some function F(z,.)

and estimate the difference. We refer the reader to [C.C.] for this kind of results.

5. Numerical results and concluding remarks
Let us assume in this section that  is the square (—1,1)2, T’y = 8, and consider the
case of two wells

wy, = (—1,1) , W2 = (1,—1).

Our results apply since n = 2. Moreover set

(&) = 1€ - w1l2 1€ — w2|2.

It is not difficult to check that these data fit our previous analysis. Since

0Ly 41
—2w1 2w2

the minimizing sequences of (1.5) are choosing their gradient alternatively around w; and
w, with a probability which tends to % (see Theorem 6 and Corollary 2). This can be
observed on the figure below.

In fact, in order to minimize the energy, the computer uses almost exactly the tech-
nique developed in Theorem 1. Indeed, with two wells the function uj built in Theorem 1
looks as the one produced by the computer. Of course, the oscillations of the minimizing
sequences are stopped at the level of the grid.

Our numerical codes use standard iteration algorithms. We start with a random

distribution of initial values of the function close to 0 and we decrease the energy using
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a conjugate gradient method. An example of the final result is ploted on the following
figure.

m ATl /7
: ‘, //////r \'lll’/l’ /// ////////// 7 ‘

E //,\wlﬂu/// i l 7N
PN /’n‘ /,’///,/’//’//Z// I’/“%”Z//’/’/’/ 7’/” i W /@
AR ”/ ”///’ll //,// i /”/’"‘\ 4
38 0, \'/////// //’”"'V( ////,‘ 7 )

: ! //l/ ’ ""‘l/ /

MESH 40x40 (FINAL)

Computational Result for h = 1/40

As we mentioned earlier the most interesting examples of applications of ou
ri

our results
occur in the study of deformations of ordered materials such as crystals. In this case
the potential wells are mat

Moreover, due to the frame indifference, these wells are
nfinite in number. Also deformations have to satisfy the compatiblity condition which

28



makes the problem more involved. For some results in this direction and complements we

refer the reader to [C.C.K.] and [Co.].
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