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1. Introduction. This paper continues our study [CGG], [GG] of a motion of phase-
boundaries whose speed locally depends on the normal vector field and curvature tensors.

Material science provides a lot of examples of such a motion. Let D; denote a bounded
open set in R™ where one phase, say, solid of material occupies at time t. Another phase,
say, liquid occupies outside D; and two phases are bounded by an interface I'; called a
phase boundary. We are interested in evolution of the phase boundary I';. To write down
the equation for I'; we temporary assume that I'; is smooth hypersurface and I'; equals
0Dy, the boundary of D;. Let n denote the unit exterior normal vector field of T'; = 9D,.
Let V = V(t,z) denote the speed of I'; at « € I'; in the exterior normal direction. The
equation for I'; we consider here is of form

(1.1) V = f(t,n(z),Vn(z)) on I'y,

where f is a given function and —Vn is essentially the curvature tensor. For later conve-
nience we extend n to a vector field (still denoted by n) on a tubular neighborhood of T’y
such that n is constant in the normal direction of I'; and V stands for spatial derivatives
in R™. An interesting example is

(1.2) V= ﬂ(n) (Z (,;Zl gi n) + c(t))

which is referred as evolution of an isothermal interface [Gul], [Gu2], [AG]. Physically
speaking H > 0 represents the interfacial energy and defined on the unit sphere S"71;
we extend H to R™ such that H(Ap) = AH(p), A > 0. The function ¢(t) represents the
energy-difference between bulk phases and f(n) > 0 is a kinetic constant which measures

the drag opposing interfacial motion. When H(p) = |p|, 8(n) = 1, ¢(t) = 0 the equation
(1.2) becomes

(1.3) V=—divn
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which is often referred as the mean curvature flow equation. The equation (1.2) is inter-
preted as an anisotropic version of (1.3) (with driving force ¢).

A fundamental analytic question is to construct a solution of (1.1) for arbitrary initial
data. Since solution I'y may develop singularities in a finite time even for (1.3) with
smooth initial data [Gr], we should introduce a notion of weak solutions to track the whole
evolution of I';. The first attempt is done by Brakke [B] where he constructed a global
varifold solution. However his solution may not be unique. Recently alternative weak
formulation of solutions are introduced. The main idea is to interpret I'; as a level set of a
function u. This idea goes back to [Se] for n = 2 and extended by Osher and Sethian [OS]
for numerical study of

(1.4) V=—-divn+c¢ (c: constant ).

In [CGG] Y.-G. Chen and the authors introduced a weak notion I'; of (1.1) through
viscosity solutions u in (0,00) x R™ of the equation induced by (1.1). We constructed a
unique global weak solution {T';};>¢ with arbitrary initial data for a certain class of (1.1)
including (1.2) - (1.4) as a special examples (where H is C? outside origin and convex, and
B is continuous). In [GG] we clarify the class of (1.1) which our theory apply. Roughly
speaking, our theory applies to (1.1) provided that the equation is degenerate parabolic and
that f grows linearly in Vn (see [GG]). Note that this includes the case when H is convex
not necessarily strictly convex for (1.2). The case when f depends on x will be discussed in
[GGI] and [G] using comparison results in [GGIS]. Almost the same time as [CGG], Evans
and Spruck [ES1] constructed the same unique solution but only for (1.3). Their method
of construction is approximation while ours are Perron’s method which applies to more
general equation than (1.3). Very recently based on results in [CGG] Soner [S] recasted
the definition of solutions and obtained the asymptotic behavior of weak solutions to (1.2)
when ¢ < 0 where ¢ is independent of t. After we completed this work, we learned that
analysis in [CGG] and [ES1] for (1.3) is extended by Ilmanen [I] on manifolds.

In this paper we discuss relation between classical solutions and our weak solutions
when the former exists. In [ES1] Evans and Spruck proved that their solutions agree with
the classical solution up to the time the latter exists. In this paper we extend their results
to general equations (1.1) even if the equation is degenerate parabolic (see §3). In the
meanwhile we construct a local classical solution to (1.1) provided that the equation is
uniformly parabolic by a level surface approach in [ES2] where they discussed (1.3) only.
Our generalization clarify the key ingredient of this method (see §2). In §4 we prove a
result which suggests that the cone like singularity is impossible to appear.

The bibliography of [CGG], [GG] includes many references related to the mean cur-
vature flow equation (1.3). We take this opportunity to note some other, related articles
not cited there and not mentioned elsewhere in this paper. The equation (1.3) is derived
formally as a singular limit of the Allen-Cahn equation. If the motion is smooth, the
convergence is proved by Bronsard and Kohn [BK] and de Mottoni and Schatzman [MS]
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and the proof is simplified by [Ch] very recently. After we completed this work, we learned
that Evans, Soner and Songanidis [ESS] proved the convergence even if T'; has singularities
(assuming that T'; develops no interior). We also learned that Evans and Spruck [ES3]
proved that OT'; is countably n — 1 rectifiable for almost all time ¢; however, little is known
for the regularity of weak solution I'y even for (1.3). For anisotropic version (1.2) less is
known. S. Angenent discussed this topic when n = 2 but H is not necessarily convex (see
his article in this proceeding). We note that (1.2) is also derived as a formal limit of some
Ginzburg-Landau equations [Ca]. Very recently Taylor [T] analyzed (1.2) by completely
different method when H is a crystalline energy (so is not C?). This topic is discussed also

in [AG].

2. Local smooth solutions. There seems to be a couple of ways to construct a
unique local-in-time smooth solution {I't} of

(2.1) (a) V = f(t,n,Vn) on I'y,
(b) Ft|t=0 = FO,

where I’y is a closed smooth hypersurface in R™ provided that the equation is uniformly
parabolic. Usually one introduces coordinates to represent I'; to get equations of map-
pings parametrizing I'y. However, there are a lot of freedom to choose coordinates so the
equations become highly degenerate. Hence we are forced to use the Nash-Moser implicit
function theorem to get a local solution (cf. [Ha]). However, if we fix the parametriza-
tion of I'y one can apply usual and more familiar implicit function theorem to get local
solutions. Indeed, if we express I'; by “height” from T'y we get a single uniform parabolic
equations on I'y for the height function. This approach is carried out by [B] (and [C]) for
the mean curvature flow (plus a driving force) equation; see also [Hu| where the proof is
implicit. Since the equation is considered on the manifold Iy, there needs a lot of notations
from differential geometry to write down the proof, although this approach is theoretically
simpler. The third alternative method is introduced by Evans and Spruck [ES2] to solve
the mean curvature flow equation locally. Their idea is to construct a signed distance
function of I'; instead of 'y itself. Our goal in this section is to extend their method to
more general equations (2.1). Our generalization will clarify the core of the argument.

For (2.1) we only assume smoothness of f and a uniform parabolicity to prove the
local existence of smooth solutions which we should state below. Let S"~! denote an n —1
dimensional unit sphere in R™. Let M, denote the space of n x n real matrices and S,
denote the space of n X n real symmetric matrices equipped with the usual ordering. We

often use the following projection:
Qp(X)=RzXRy, Ry =I-P®PES,, BES", XEM,,
where I denotes the identity matrix (see [GG]). We now list our assumptions on f.

(2.2) f:[0,T) x S™ ' xM,, — R is smooth .
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(2.3) There is a constant 6,0 < § < 1 such that

! _ _
hTrf)l - Ut =P, —Qp(X +¢Y)) - f(t, —P, - Q5(X))}
> 6 trace Q5(Y) Y >0
for all (¢,7,X) €[0,T) x S" ! xS,,Y €8,.

The second assumption can be interpreted as a uniform ellipticity of —f.

THEOREM 2.1. Assume (2.2) and (2.3). Let I'y be a smooth hypersurface which is a
boundary of a bounded domain Dy in R™. There are a positive number T, < T and a
unique smooth family {T';}o<¢<T, of smooth closed hypersurfaces which solves (2.1).

We derive an equation for the signed distance function of I'; satisfying (2.1a). From
now on we assume that f is independent of ¢ for simplicity since the proof can be trivially
modified for f depending on t. Suppose that the desired solution I'; exists. Let D; be the
bounded domain surrounded by T';. If a function u(¢,2) > 0in D; and v = 0 on Ty, we
see (2.1a) is equivalent to

(2.4) ug + F(Vu,v2u) =0on Ty (ut=0u/0t)
with
(2.5) F(p,X) = ~|plf(=p, —Q3(X)/Ipl), P =1p/Ip|

provided that the gradient Vu does not vanish on I'; (see [GG]). Here V2u denotes the
Hessian matrix of u. If u is a signed distance function of I'y defined by
d((l?, Ft), T € Dt

u(t @) = { —d(z,T), z ¢ Dy,

then (2.4) is equivalent to

(2.6) u + F(Vu,V?u) =0 on I,
with
(2.7) F(p,X) = F(p,X) - trace (XP®D).

Indeed, since |Vu| = 1 in a tubular neighborhood of I'y, differentiation yields
Viu(Vu @ Vu) =0
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which shows that the last term in (2.7) is not affected for the signed distance function.
There is an advantage of (2.6) over (2.4) since (2.6) is no longer degenerate in Vu direction
(see Proposition 2.6). A geometric consideration shows that

Vid(z +rn) = V2d(z)(I +rV?d(z))™!, z €Ty,r: small,

where d(z) = d(z,Tt). Therefore, for the signed distance function u solving (2.6) on I'y we
have

u; = G(u, Vu, VZu)
in a tubular neighborhood of T'y (not only on I';) with
(2.8) G(r,p, X) = —F(p, X(I - rX)™").

The above observation shows that Theorem 2.1 follows from the following Proposition 2.2
and Lemma 2.3.

PROPOSITION 2.2. Suppose that f and I'y satisfy hypotheses of Theorem 2.1. Let vy
be the signed distance function of I'yg. For 69 > 0 we set

Q={z e R%|v(a)] < b}, Qr=1(0,T)xK.

Then for sufficiently small &y there are T, > 0 and a unique function v € C'*°([0,Ty) X
Q) x C*(Qr,) which solves

(2.9) v, = G(v, Vv, V*v) in Qr,
(2.10) |Vo| =1 on (0,T) x 002
(2.11) V]i=0 = vg in

in the classical sense, where G is defined by (2.8).
LEMMA 2.3. Ifv solves (2.9) - (2.11) with |Vvg| =1 in §, then |Vv| =1 in Qr,.

Proposition 2.2 is based on a standard theory [LUS] of parabolic equations and an
iteration argument, and it is rather straight forward extension of [ES2]. We just sketch
the proof in the last part of this section. Lemma 2.3 reflects an interesting structure of
(2.9) so we give its proof. The key ingredient is a generalization of a calculus identify

9 T . a? _ 22( T )
or \1-raz _(1—7'1')2_1:3:1; 1—rz)’

see the following two lemmas.




LEMMA 2.4. Forr € R let ®,(X) be the Yosida approximation of X € M,, i.e.
$,.(X)=X(I-rX)1.
Then
o (X)[Z]=(I-rX)'Z(I -rX)"1,Z e M,,
where d®,.(X) denotes the Fréchet derivative of ®, : M,, — M,, at X.

Proof. The left hand side equals the directional derivative of @, at X in the direction
of Z. This implies

d®,(X)[2] = lim {(X+hrZ)I-r(X+RZ) —(I-rX)'X} 0!
= Illiir%)(I —rX) NI - X)X +hZ) - X(T-r(X +hZ)}I - (X +12Z)) 'R}
= lim (I — rX) ' Z(I—r(X+RhZ) P =(I-rX)'Z(I -rX)"".

LEMMA 2.5. (i) d®,(X)[X?) = (I —rX)72X? = £2,(X).
(ii) For g : M,, — R let g.(X) be

gr(X) = g0 @.(X) = g(2,(X)).
Then

0 0g-(X)
— (X)) = dg(X)[X? = E XX, X = (X;;) € M,,.

Proof. Lemma 2.4 and

2<I>,(X) = —-rX)'X?
or

yield (i). To show (ii) we use the chain rule to get
(2.12) dgr(X)[Z] = dg(X;) 0 d2(X)[Z]), X, = ®,(X)
=dg(X)(I-rX)'Z(I-rX)""] (by Lemma 2.4).
Applying (i) yields

‘a 7 a 0 a a S~
dgr()‘ )[‘le = dg(-xr) |:'6_r(b1(}‘ )] = Egr(—)x )
This proves (ii) since we have
‘s a agr X 'd 'e
dgr(X)[X?] = WS,.—_)-XMAM
T

by the definition of differentials. [J

We next show a uniformly ellipticity of G = G(r,p, X ) in (2.8) near |p| =1 and r = 0.
For 6 > 0, K > 0 we get

. 1 . .
(2.13) U=Usy = {(r,p,X) ERXR" xSy;|r| < 6,; < lpl <2,|X]| < I\} ,
where | X | denotes the operator norm of the self-adjoint operator X.

6



PROPOSITION 2.6. Assume (2.2) and (2.3) for f. Assume that §K is sufficiently small,
say 6K < 3/8. Then there is a constant ¢,0 < ¢ < 1 such that

det< S 2 p Xt < el

_X..
1<i,j<n 0X;

for all (r,p, X) € Usk, € = (&1, - €n) €R™

Proof. The upper bound is trivial since dG/8X;; is continuous in U. To get the lower
bound we first observe that (2.3) implies

(2.14) . aaTF;j-Y,-j < —ftraceY forY >0,

4]
where F is defined by (2.7). Indeed from (2.3) and (2.5) it follows that

F(p,X +¢eY) — F(p, X) < —&(8 trace (RzY Ry) + trace (Y5 ®7))
= —¢(0 trace Y + (1 — 0) trace (Yp® D))
< —ef traceY forY >0,e >0

since trace (Yp®p) > 0. Here we have used R% = Ry so that
trace (RzY Rp) = trace (Y Rp).

We thus obtain (2.14).
We apply the chain rule (2.12) to get

g}%(r,p,X )6k = dg (X)E®E],  g.(X)=—F(p,X,)
ij Y

= d(—F)(Xy) 0 d®-(X)[§ ® €],
where X, = ®,(X) is the Yosida approximation of X. Lemma 2.4 now yields

0G .. = O(-F)

ij aX"j&ﬁj - 9%

(2.15)

Vi withY = (I —rX) Q&I -rX)7 .
Since |rX| < 3/8 implies (I —rX)~! > 2I/5, we have

9\ 2
YZ(E) E®E>0.
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Applying (2.14) to (2.15) yields

oG

46
£o> €2,

25

Proof of Lemma 2.3. Since v solves (2.9), a calculation shows that the function

w=|Vv]* -1
solves
oG 0G oG
2.1 L oG %G
(2.16) wy 2 aXijw]+z£:3ewe+26rw
49 oG oG i
. “VikVik |
or ey 0X;;

where all partial derivatives of G is evaluated at (v, Vv, V2v) and we = dw/0dz¢, wij =
0*w/dz;0z; etc. Since vg; = vjk, from Lemma 2.5 (ii) it follows that

G < G

—_— = — ViV k-
or —~ 0Xi; I
1,5,k

The equation (2.16) now becomes

oG 0G oG
2.17 = —Wj; -_— 2 1 .
(2.17) wy _jw i+ zg: ng + 5, W in Qr.
Since (2.17) is parabolic by Proposition 2.6, applying the maximum principle with (2.10)
and |Vyg| =1 yields w = 0 in Q7,. This is the same as |[Vv| =1 1in Qr,. 0

Remark 2.7. If f in (2.1) depends on z in addition, (2.16) should be altered. Appar-
ently, straight forward extension of Theorem 2.1 for f depending on 2z is not easy. The
proof of Proposition 2.2 is easily extended while there is a difficulty in the proof of Lemma
2.3. We do not get the equation like (2.17) yielding w = 0, when f depends on .

We conclude this section to give a brief sketch of the proof of Proposition 2.2; see [ES2]
for the detail. We set

h = G(vo, Vg, V:up)

and write the equation for ¥ = v — vy — th with the boundary conditions. The function v
can be interpreted as a small disturbance for vg 4 th. Since the linearized equation around

v +th is uniformly parabolic in region we are interested in, we apply Schauder’s estimates
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[LUS] to carry out the standard iteration procedure which yields a local classical solution
v. A standard regularity theory [LUS] guarantees the higher regularity of v up to t = 0.

Remark 2.8. In the method just sketched there is a curious point on minimal regularity
assumptions on the initial data vg in (2.11) to construct the local classical solution. We are
forced to assume vy € C4t*(0 < a < 1) guarantee that vy + th is C?+1+2/2 which is the
least regularity assumption to get solution v € C2+*1+2/2 (see [LUS] for the definition).
We wonder whether or not vy € C?*% is enough to get C?+1+/2 golution v of (2.9) -
(2.11).

3. Consistency with weak solutions. The smooth solution constructed in §2 may
collapse in a finite time. In [CGG] weak solutions for (2.1) is introduced so that one can
track whole evolution of T'y; see also [GG]. In this section we show that the smooth solution
agrees with the weak solution in the time interval where the former exists. This result is
proved by [ES1] for the mean curvature flow equation (1.3). Although the basic idea is
similar, our proof given below is simpler and more general than theirs because we do not
approximate solutions.

We first recall the definition of weak solutions in [CGG, GG]. Let {(I';, D;)},5, be a

family of compact sets and bounded open sets in R™. Suppose that for some a < 0 there
is a viscosity solution u € C,([0,T] x R™) for

(3.1) u; + F(t,Vu, V?u) = 0 in (0, 00) x R"

such that zero level sets of u(t,-) at ¢ > 0 equals I'; and that the set where u(¢,-) > 0
equals D;. Here F is determined from f through (2.5) where t-dependence is suppressed.
If (T4, D¢)|t=0 = (Lo, Do) we say {(T's, D¢)}i>0 is a weak solution of (2.1) (with initial data
(To,Dy)). Here T > 0 is arbitrary and v € Cy(A) means v — « is continuous with compact
support in A.

It is now well-known that there is a unique (global) weak solution of (2.1) if Dy is
bounded open and I'y(C R™\ Dy) contains 8D, provided that (2.1) is degenerate parabolic
and f grows linearly in Vn ([CGG, Theorem 7.3], [GG, Theorem 3.8]). For example if
f = f(t,p, Z) satisfies

(2.2") f:[0,00) x S* ' x M, — R is continuous ,
(2.3" f(t, =D, —Qx(X)) > f(t,-p,—Q(Y)) for X >V, p€S" ' andt>0

(which are weaker than (2.2) and (2.3)) and

(3.2) Crr = sup{%;lﬂ <RpeS"10<t< T, 1<4,j< n} < 00,
ij

then there is a unique global weak solution with given initial data. The condition (2.3")
means a degenerate ellipticity of —f. Our theory applies to (1.2) provided that H is convex
and C? outside the origin and that 8: S™! — R and c: [0, 00) — R is continuous.
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THEOREM 3.1. Assume (2.2'), (2.3') and (3.2) for f in (2.1). Let Ty be a smooth
hypersurface which is a boundary of a bounded domain Dy in R"™. Let {T'{}o<i<7, be the
local smooth solution of (2.1) with initial data T'g. Let {(I';, D¢)}¢>0 be the weak solution
of (2.1) with initial data (I'g, Dg). ThenT'y =T] for 0 <t < Tp.

If we assume (2.2), (2.3), we proved in §2 that there is a unique smooth local solution.
However under (2.2'), (2.3') we do not know the existence of unique classical solution of

(2.1).
We again assume that f is independent of ¢ for simplicity. Let v denote the signed
distance function of I'j, i.e.

d@,T}),  ze€D;

v(t’w) - { _d(m’rf)a T € Dfa

where Dj is the bounded domain bounded by I';. For the proof we construct a viscosity
solution u of (3.1) in (0,Tp) x R™ such that the signature of u agrees with v. Since I'{ is a
smooth solution of (2.1) we see as in §2 for each T7,0 < T} < Tp there is 6 > 0 such that
v solves

(3.3) v = G(v, Vv, V?0) in R, = U {t} x Qs(t)
0<t<Ty

with Qs(t) = {z € R"; |v(t,z)| < 8}, where G is defined by (2.8).
LEMMA 3.2. For sufficiently small é the function v satisfies
(3.4) ve + F(Vv,V?) <0 in RY, N {v < 0}
in the classical sense, where F' is as in (2.5).
Proof. We take § small so that [vV2v| < 3/8 in erpl. Since |rX| < 3/8 implies
XI-rX) ' =X =rX*(I-rX)"!' <0forr <0,
we see, by (3.3),
(3.5) vy + F(Vv, V) < vy — G(v, Vv, V20) = 0 in ngl N {v <0},

where F is defined by (2.7). Here we use the fact that (2.3") implies the degenerate
ellipticity B
F(p,X)<F(p,Y) ifX>Y

Since |Vv| =1 implies
V2u(Vo @ Vv) = 0,

(3.4) now follows from (3.5). 0
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LEMMA 3.3. For sufficiently small § there is oy such that
w(t,z) =e "w(t,z), o> 0y
satisfies
(3.6) we + F(Vw, Vw) <0 in R}, N {v > 0}.
Proof. Since v solves (3.3), using

wy = —oe o + e Tty

F(Ap,\X) = \F(p, X),

we see

wi + ow + F(Vw, V2w(I —vV?0) ™) =0
or
(3.7)  wi + F(Vw, Viw) = F(Vw, V?w) — F(Vw, Vw(I — vV*)™!) - ow in RY,.
By taking é small, we may always assume that
V2| < 3/8, |V?w|< |V <M in RY,
with some M independent of t and z. A calculation now shows
|F(p,X)— F(p,2)| < K|IX -Z|, K=Csum

for X = V?w,Y =V?0,Z = X(I —rY)™',r = v, where Cgr is as in (3.2). From (3.7) it
follows that
w; + F(Vw, Viw) < K|X - Z| — ow.

Since
XI-rY)'—X=rXY(I-ry)™!

= v(V2w)(V20)(I — vV?0)™!

for o > o with
oo = I sup |[w(VZ0)(I — vV20) 7|
RS,
we have
w; + F(Vw, Vw) < (09 — 0)w
<0 forw >0

This is the same as (3.6). 0
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PROPOSITION 3.4. For each Ty, 0 < T\ < T, there are (viscosity) sub- and supersolu-
tions w_ and w4 of

(3.8) uy + F(Vu, V*u) = 0 in (0,T}) x R"

such that w_ < w4 and wy has the same signature as v and satisfies

w4(0,z) = v(0,z) if |v]| < &

wi(t,x) = —bp ifv < —ég

wy(t,z) = b ifv > 6
for some 6§y > 0.

Proof. Let § be as in Lemmas 3.2 and 3.3. We set

{ min(w, éy) ifv>0
w_ =
max(v, —bp) ifv<0

with 6y = 6/2 where t € (0,T). Clearly w_(0,z) = v(0,z) for |v] < § and w_ has the
same signature as v. Since w is a subsolution of (3.8) in {v > 0} and v is a subsolution in
{v <0} and since F' is geometric

min(w, ), max(v,—bp)

are subsolutions of (3.8) in {v > 0}, {v < 0}, respectively (see [CGG, Theorem 5.2]).
We shall prove that w_ is a subsolution of (3.8) in (0,77 ) X R™. To show this it remains
to show that w_ is a subsolution on the set of v = 0. Since I'] is smooth, it is not difficult

to prove that
Prrw_(t,2) C PPHw U PP To(t, z),

where P2t denotes the parabolic super 2-jets (see e.g. [GGIS] for the definition). On I'$
we have

w; + F(Vw, Viw) <0
v + F(Vo, V30) <0

in the classical sense so for (7,p, X) € P>+t w_(¢,z) such that v(t,z) = 0 we see
T+ F(p,X) <0

which implies w_ is a subsolution on the set {v = 0}.
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In the same way we see v and w are supersolutions in {v > 0} and {v < 0}, respectively.
We thus conclude

{ min(v, §p) ifv>0

Wy = .

max(w, —8p) fo<0 (w=e"%)
1s the desired supersolution; w_ < w4 follows from the definition. []

Proof of Theorem 3.1. Using w4 in Proposition 3.4, Perron’s method [CGG, Theorem
4.5] provides a viscosity solution u of (3.8) in (0,77) X R™ such that w_ < u < wy on
[0,T1) x R™. Since u is forced to have the same signature as v, we find I’y = I}, D; = D}
for 0 <t < Tj. Since Tj is an arbitrary positive number less than T}, the proof is now
complete. []

Remark 3.5. After this work is completed, Evans, Soner and Songanidis [ESS] proved
that the signed distance function d of weak solution I'; satisfies

dy— Ad < 0in {d < 0}

globally in space in the viscosity sense provided that I'; solves the mean curvature flow
equation (1.3). This can be interpreted as an improvement of Lemma 3.2 for (1.3). It
would be interesting to study whether

dy + F(Vd,V?d) <0 in {d < 0}

holds for (2.1) with general f.

4. Singularities. Smooth local solutions may collapse in a finite time even for the
mean curvature flow equation (1.3). It is shown in [Gr] that a barbell with a long, thin
handle actually becomes singular (see also [A]). A natural question is what kind of singular-
ities actually appears. In [Hu] Huisken considered a two-dimensional rotational symmetric
hypersurface with positive mean curvature and proved that the singularity behaves like
cylinders asymptotically. Note that this does not exclude cusp singularities. The place of
singularities related to this problem is discussed in [K].

Our result in this section suggests that asymptotically cone like singularity is impossible
to occur in the motion by mean curvature. We show in particular that if the singularity is
nondegenerate in some sense, then it looks like sphere asymptotically.

THEOREM 4.1. Let {(T'y, Dy)}:+>0 be a weak solution of (1.3). Let u be a defining
function of (I'y, D;) i.e.

Ty = {z € R";u(t,z) =0},
Dy = {z € R™";u(t,z) > 0}
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and u solves

. Vu
(4.1) uy — |Vuldiv <|Vu|) =0

in the viscosity sense. Let to > 0 and z¢ € I'y,. Suppose that

1
(4.2) u(t,e) = er + S Viu(to, zo)y - y + 0(ly[* + |7]) as [y[* + |7 = 0,

where T =t — tg,y = & — xg, t < tyg. Then u is of the form

k
(4.3) u(t,e) =er + Ayl +o(lyl* + 7))

=1
with ¢ = 2(k — 1)\, A # 0 for some k < n.

Proof. We rescale u around (%, z):

1
ug(7,y) = ;u(azr +to,0y + xy), o >0.
By (4.2) u, converges to a polynomial v of form
U(T,y):CT+Ay'y) AESn

uniformly in every compact sets in (—oo0,0] x R™. By the stability [CGG, Proposition 2.4]
we observe that v is a viscosity solution of (4.1) in (—00,0) x R®. We may assume A is
diagonal by a rotation. Plugging

k
o(r,y) =cr+ Y Nyl (A #0forall 1<) <k)

Jj=1

in (4.1) yields \y = Ao = -+ = )\ and

k
v(r,y) = cr+)\Zy]2~,c: 2(k —1)A

=1
for some k. This is the same as (4.3).

Remark 4.2. If det V2u(tg,z0) # 0, then k& = n. This means singularities look like
sphere, which is very related to results in [Hu]. The assumption (4.2) is fulfilled if we
assume u is C? and Vu(tg,z0) = 0. However, we still do not know whether or not one
can take such a defining function v near singularities. After we completed this work, we
learned that Ilmanen [I] showed that u is not necessarily C? even if u is initially C?.
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