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Abstract. The local influence approach of Cook (1986) to regression diagnostics is developed
and discussed, and compared with Cook’s (1977) deletion approach. Similarities between the two
approaches are stressed, as well as the more specific nature of the local influence approach, and its
ability to handle cases simultaneously. The perturbation ideas of the approach are applied to the
linear model assumptions of constant variance and independence, and contrasted to perturbations

of the response and explanatory values. The assessment of deletion and local influence is reviewed.
Some illustrations are given.
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1. INTRODUCTION

A practical and well-established approach to influence analysis in statistical
modelling is based on case deletion; Cook (1977) pioneered the idea. The effect
or influence of the ¢th case of the data is measured by a comparison of parameter
estimates before and after deletion of the ith case. The approach is also central to
the work of Belsley, Kuh and Welsh (1980). The idea of differentiation instead of
deletion is prominent in the local influence approach of Cook (1986), as it was in
the works by Belsley et. al. (1980) and Pregibon (1981). Local influence is based
on the perturbation of a case and not on its total deletion, and employs a differ-
ential comparison of parameter estimates before and after perturbation. There are
several parallels between the approaches which will be stressed; also there are some
important advantages of the local influence approach which will be highlighted. A
particular parallel is that case deletion can often be regarded as an infinite pertur-
bation to a single variance, but finite perturbations to other aspects can also be
employed to reflect other and more specific concerns.

This paper will begin with an introduction to local influence, inspired by Cook’s
(1986) work, but mainly in the linear regression setting and with a weaker reliance
on geometrical curvatures. Rather, the natural perturbation counterpart of Cook’s
distance is employed, hopefully making local influence as appealing as deletion
influence. Several schemes of perturbation are considered, with some emphasis on
the assessment of the effects of perturbations. Two data sets are used to illustrate
the theoretical developments; one of these leads to suggesting that a scale modified
Cook’s distance can be of some advantage.

2. IDEAS OF LOCAL INFLUENCE

We suppose a statistical model with parameters § of interest and a set of n
response data y to which the model will be fitted; covariate data and other param-
eters may also be present. The log likelihood or log profile likelihood, as the case
may be, of parameters 8 will be denoted by L(B|y).
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We next consider perturbations, and three sorts will be logically distinguished:
Perturbations to assumptions, perturbations to data values and perturbations to
case weights (including deletion with its zero case weight). All models involve
simplifying assumptions — the constancy of error variances and the independence of
data cases are considered here, the two main ones in regression. When perturbing an
assumption, a key requirement is that the parameters of the perturbed model should
retain their original meanings and importance. Suppose the perturbations are w;
the w are mathematical quantities introduced into the model, not parameters to
be estimated and not data. Parameter estimates, usually maximum likelihood, are
then obtained as functions of the perturbation, say as ,é(w); the null perturbation
is wq, with ,é(wo) = f being the parameter estimate for the unperturbed model.
Influence assessment involves the comparison of ,é(w) and B; local influence involves
this comparison when w departs just slightly from wy. This leads to increased
mathematical tractability via the use of derivatives with respect to w, instead of

differences. One general way of comparing ,é(w) and B is by their likelihood distance
apart, defined as

(2.1) D(w) = 2{L(Bly) — L(B(w)ly)}-
With local influence, (2.1) is studied differentially or geometrically.

From a diagnostic point of view we are, as the simplest objective, concerned
about individual cases; the perturbation w might just involve the ith case. Suppose
we find that perturbation to the zth variance in a linear regression model causes
large changes to the parameter estimates. This does not tell us much about the :th
case of the data. It does obviously tell us that the assumption of the equality of the
1th variance to the others is influential as far as parameter estimation is concerned.
It does not allow us to infer that the variance of the :th case was different to the rest,
for the perturbation was not being estimated, but was assumed. The conclusion
is reached that a case is influential if one or more of the model assumptions for
this case cannot be varied without important changes to the resulting parameter
estimates. The strength of influence of a particular case might be gauged by the
number of types of such perturbation which cause large estimate changes. The ideas
here might properly be described as “assumption influence” or “model sensitivity”.

It is hard to relate logically the above type of influence to deletion influence, al-
though mathematically there is a connection for standard linear models between an
infinite variance and a zero weight for the ith case; a similar view and some misgiv-
ings have been expressed by Loynes in discussion of Cook (1986). Perturbation can,
however, be applied to aspects of data which will not involve any model modifica-
tions. Likelihood distance of changes to parameter estimates does then point to the
direct influence of data values; if small changes in particular data values cause large
changes to estimates, then data influence is apparently established, in somewhat
the same spirit as deletion. It does not seem possible, however, to encompass dele-
tion as a data perturbation operation; deletion influence (or zero case-weighting) is
logically distinct from both assumption- and data-influence. Case-weighting gives
a third type of influence; it raises interesting questions of interpretation, discussed
with Dr. F. Critchley at the IMA workshop, and currently being investigated.
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The earlier presentation here has, for initial simplicity, been concerned with in-
dividual case influence; much, however, of local influence methodology is concerned
with joint influence.

3. JOINT LOCAL INFLUENCE

In Cook’s (1986) approach to local influence an important idea is given for the
simultaneous handling of perturbations to all cases. Cook suggests regarding the
likelihood distance D(w) or some other suitable measure of the distance between
B(w) and B as a surface in the n-dimensional Euclidean space of w. He then
proposes a line across this surface with direction cosines £ which passes through
the point w, of the null perturbation; this line is thus of the form w = w, + a¥,
with “a” measuring distance along the line and |a| being the Euclidean magnitude
of the perturbation. The direction cosines £ are thus associated with the cases
of the data, and the n dimensional surface D(w) is replaced by the much more
tractable one-dimensional influence curve {a, D(w, + af)}. The next key idea is
to choose the direction ¢. This is ideally done in relation to a perturbation of
chosen magnitude “a”, so that D(w, + af) is as large as possible; the individual
perturbations contributing to “a” which each case should receive are thus selected,
the most influential cases being those associated with the larger direction cosines.
Further tractability is allowed by requiring “a” to be small and thus needing only
to consider the local behaviour of the influence curve D(w, + af) at w,. For a scalar
parameter 3, D(w) may as well be replaced by B(w) — B, since there is no need to
combine the effects of different parameters; it is then clear that the line should be
in the direction # which maximises or minimises 83(w, + af)/da(a = 0). When D
combines parameter estimates, D(w, + af) may have a minimum at a = 0, as does
the likelihood distance, and then the curvature or second derivative of D(w, + af)
is the appropriate quantity to maximise in order to determine {. In practice, a
small proportion of the cases usually have direction cosines much larger than the
rest, and these are the cases of most joint influence. It does not follow, however,
that these cases exert practical influence, and ideas for assessing and determining
perturbation sizes will be considered in Section 5.

Returning to the likelihood distance form of D(w, + af), there is some elegant
theory for determining ¢ due to Cook (1986). The required second derivative of
D(w, + af), which Cook emphasises as the curvature at w, and which we will call
“Cook’s directional curvature” in direction £, evaluates as

_ OD(wo+ab)|  _ _PPL(B(w, + al))

CU da? B da?
(3'1) A a=0 ) a=0
_ __c’i OL(B(w, + al)) 9B(w, + af)
~ da | 8w, + al)T da .




and hence
cu, = o7 d 0B(wo+a0)T  PL(B(wo+al))  9B(w, + at)
¢ d(w, + al) 8P(w, + al)dB(w, + al)T d(w, + al)T

2 (U o),
ow, BBBT owT &

For the standard linear model with design matrix X and residual mean square error
&%, there is the particular result

14

a=0

(3.2)

(3.3) cU, _ETO%(;") (XTX)aﬁ(w)f/ 2

The maximizing of (3.2) over £ is a standard eigenvalue problem, for instance,
Green & Carroll (1976, p. 213); the largest. eigenvalue of the inner n X n matrix in
(3.2) is its maximum, and the corresponding eigenvector is the required {. Never-
theless, for large n the computations could be prohibitive. Simplification may be
possible by writing the observed information matrix in (3.2) as BT B using the spec-
tral decompostion. Then the n X n matrix in (3.2) can be written as AAT, where
A= {aﬁ(w)T/awo}BT is n X p and p is the dimension of J; this has the same pos-
itive eigenvalues A as the p x p matrix AT A and its eigenvectors are Az / VA, where
z is the eigenvector associated with A. Since p is usually small, the eigenvalue prob-
lem is thus easily solved. It will also be sensible to obtain £ for eigenvalues which
are nearly as large as the maximum, if there are any. This way of solving large
eigenvalue problems is extremely useful in the local influence approach.

4. LOCAL AND DIRECTIONAL VERSIONS OF COOK’S DISTANCE

Since Cook’s distance, Cook (1977), has become so well established in deletion
influence, it seems worth while to stress parallel local and directional quantities.
Cook’s distance is concerned with individual cases, and thus in the direction of the
ith axis (: = 1,2,...,n) in the n dimensional perturbation space. Hence, taking
(3.2) with ¢T = (0,...,1,...,0) where the 1 is in the ith position, and with w; as
the ¢th element of w, “Cook’s curvature” for case i can defined, as

9B(w)T [ 9°L(B)) 9B(w)
(4.1) Do, {— OBBT} B,

w=w,

Also, a directional version of Cook’s original distance for the perturbation w, + af
in a general direction £ can be taken as

*L(B)
apsT

and will be described as the “directional distance”. As special cases, take £ =
(0,...,1...,0) for the ith case, as at (4.1), and so obtain

P*L(B)
oppT
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where ,é(a, 1) = B(wo + af); this will be called the “perturbation distance” for case
t. Continuing, a “directional local distance”, in analogy to (4.2) can be stated as,
B(wo + al)T

(4.4) >

p 7,

{_82L(ﬂ)} 3B (w, + al)
a=0 aéBT aa

a=0

and in this form is seen to be equivalent to (3.2), Cook’s directional curvature,
apart from the division by p. Thus Cook’s directional curvature is a natural local
and directional analogy to his original “distance”, and as such it should be easily
understood. When (4.4) is taken with ¢T = (0,...,1,...,0), it may sensibly be
called the “local distance” for case i, and is a basic quantity of local influence
methodology.

5. PROBLEMS OF MEASURING INFLUENCE

For deletion influence, Cook (1977) suggested a way of assessing the impor-
tance of the ith case according to whether or not its deletion moved the regression
parameter estimate to the edge of the 50% or 10% confidence region based on all
the data. Movement to the edge of the 50% confidence level is quoted as “giving
cause for concern”, while the generally little movement within a 10% confidence
region is said to “give an uncomplicated analysis”. More fully, the attained values
of the confidence levels for deletion of each case in turn seems to be suggested, and
one-minus these values are described as “descriptive levels of significance”. This led
to some objections in a published letter, Obenchain (1977), partly concerning the
frequency connotations of the phase, but Cook responded that nothing of the sort
was implied, and confidence level movement simply gave a calibration on a familiar
scale. There certainly are difficulties in suggesting a frequency interpretation; in
the standard regression cases, Cook’s distance is a function of just the standardized
residual and leverage. Its distribution thus depends on the explanatory space via
leverage and on the model of the data set. The frequency with which deletion of
a case of the data causes parameter estimate movement to the edge of the 50%
confidence region will generally be much smaller than 50%; for n = 20, p = 3 and
equal leverage, it is nearly zero; a standardized residual greater than 3.7 is required.
Bruce and Martin (1989) reemphasize that the testing framework is not appropriate
for influence assessment.

The quoting of 50% levels for F or x? as the cut-off values in packages seems
to be misleading people, even assuming the proper understanding of these levels.
Belsley et. al. (1980, p. 28) suggested sample size adjusted cut-off values of statis-
tics, implying sample size adjusted confidence interval movement. The difficulties
can be ignored by ordering the attained levels and noting for further study any
outlying cases, defined by the “natural gap” principle of their separation from the
rest. Adherence to fixed cut-off levels does not now have the support of their pro-
posers, at least according to discussions at the workshop. Nevertheless calibration
by “descriptive confidence levels” can still be used useful.

The previous discussion applies mainly to Cook’s deletion distance; as far as
local influence is concerned, the notion of movement to the edge of confidence
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regions cannot be applied. Using the language of curvature, Cook (1986) employed
an empirical benchmark figure of 2, but was challenged in subsequent discussion, and
it cannot be justified theoretically; similarly for other “local distance” quantities.
Actual perturbations need to be involved.

One sensible strategy appears to be to plot D(w, + ag), where “a” is the size
of an actual perturbation and 7 is the maximising local direction, against “a” and
compare with the upper, say 50% point of the x? distribution on p degrees of
freedom. This can give upper and lower bounds on the perturbation size “a”,
and these values can be judged against subject matter considerations of the data.
These plots should not be interpeted frequentially, but as calibration of change.
However, as Cook’s (1986) Figure 6 shows, a closed region of “a” values cannot
be guaranteed. When perturbing a single explanatory variable, “a” is naturally in
units of the variable. When perturbing a combination of variables, Cook’s Figure 6,
it is necessary to introduce a scaling of the variables; this is an added complication,
and may not anyway be a natural course of action. When perturbing variances, “a”
is a dimensionless quantity, and comparable across data sets.

6. LOCAL INFLUENCE OF ASSUMPTIONS FOR THE LINEAR MODEL

The key model assumptions of standard linear regression which are examined
here with regard to local influence, are

(i) the constancy of variance of error, and

(ii) the independence of errors given their constant variance.

The terminology of case weights is not used for (i) for two reasons: first, it seems to
divert attention away from the perceived advantage of the local influence approach
that it can produce specifically directed diagnostics. Secondly, variance perturba-
tion is in general distinct from weight perturbation, although not for the standard
linear model. The results for (i) are mainly due to Cook (1986), while those for (ii)
are a contribution to extending the availability of local influence diagnostics. On
grounds of specificity there is little appeal in combining (i) and (ii), and anyway,
a sensible perturbation scheme is not apparent. Again, for reasons of specificity,
the influence is with respect to all the regression coefficients estimates, ignoring the
mean square error estimate.

Suppose the response variable y depends on the p-1 explanatory variables X,
X2,...,Xp—1; then the standard linear model is

(6.1) 7 y=Xp+oe

Here the columns of the n X p matrix X contain the values of the explanatory
variables and there is an initial column of ones, f is the p x 1 vector of regression
coefficients, o2 is the variance of each response, and € is an n x 1 vector of inde-
pendent standardized normal variables. The profile loglikelihood for the regression
parameters is known to be

(62)  L(B) =~ log(2m) — 5 + 7 logn —  log{(y — XA)"(y — XB)}
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and has maximized value, when § = (XTX)1XTy, of

n n o n n
6.3 —— — =+ —logn'— - T
(6.3) 5 log(27) 5 T3 log n 5 log(y™ Ay),

where A =1 — H,and H = X(XTX)7'XT is the leverage matrix.

6.1 Variance Perturbations. The variance of the :th response is perturbed
to (1 +v;)o?, —1 < v; < o0, and the perturbed model is thus

(6.4) y=XB+oVe

where V = d(1 + v) is the diagonal matrix with entries 1 4+ v, v = (v1,v2,...,v5);
v = 0 is the null perturbation. This is the familiar weighted model, and A has the
maximum likelihood and weighted least squares estimate given by

(6.5) Bv) = (XTv X)) xTy -1y,

The basic result as required by (3.2) for the direction of most local influence is given
by straightforward calculation as

Y
(6.6) % = (XTX) X7d(r),

v=0
where d(r) is the diagonal matrix of the ordinary residuals r = y — fX. Using
(3.3), Cook’s directional curvature in direction £ (and equivalent directional local
distance) becomes

(6.7) | TdmX(XTX) 1 xTd(r)e/s2.

As described after (3.2), the maximum of (6.7) over possible directions £ will be the
largest eigenvalue of the n X n matrix between £7 and £ of (6.7), and the required
¢ = I will be the associated eigenvector. Thus with (X7 X)~! written as BTB, £ is
given by d(r)X BTz /v/X where ) and z are the largest eigenvalue and its associated
eigenvector of the p x p matrix BXTd(r)2X BT. Note also that the sum and hence
average of the direction cosines in  is zero, since (1,...,1)d(r) = rT and rTX = 0.
Index plotting of Z to highlight jointly influential cases will be illustrated in Section
8.

The diagonal elements of the inner matrix of (6.7) divided by p have been called
the local distance for case 7 in Section 4, and are seen to be r?h;/p5?, where h; is
the ith leverage: this compares with Cook’s distance as r?h;/{(1—h;)*p%}. There
is an increase by the leverage factor (1 — h;)™2. This is an illustration that high
leverage enhances deletion influence more so than it does local influence.

The likelihood distance in the direction £ in this regression case follows from

(2.1) and (6.3) as

D(a,£) = nlog[{y — XB(a,£)} {y — XB(a,£)}/né?]
(6.8) = nlog[l + {8 — B(a,0)} " (XTX){B — B(a, £)}/n5”]
= nlog{1 + (p/n)C(a,0)},
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where C(a, £) is the directional distance (4.2) and B(a,?)is calculated using weighted
least squares. By asymptotic theory this can be used to obtain the level of a descrip-
tive 100(1—a)% confidence region, by equating it to x%(p), the upper 100a% point of
the x? distribution with p degrees of freedom; equivalence to Cook’s distance, with a
directional sense, is achieved from use of the approximation (n/p){exp x%(p)/n—1}
to the upper 100a% point of the F, ,_, distribution. Note that variability enters
into (6.8) via £ as well as the parameter estimates. In practice (6.8) can be used to
determine a range of perturbation values which will ensure that the parameter esti-
mates will not be moved out of their, say, 10 or 50% descriptive confidence regions;
this range should be interpretable as to its subjective importance. The plotting of
D(a,?) against “a” will be illustrated in Section 8.

For more direct comparison of the local and deletion influence approaches, con-
sider perturbation of the just the ith variance to (1 + a)o?, and then denote V as
Vi; the following result is employed,

6.9 X(xXTvx) ' xT = x(xTx)'x7T a TT7
(6.9) (XVX) (X7 X) +1+a(1_hi)h,h,

where k; is the ith row of H = X(XTX)"1XT; a reference is Belsley et. al. (1980,
p. 66). The tth perturbation distance, as defined at (4.3), becomes

2
a h;r?
6.10 a8
( ) (1 + a(l - h,-)) pG?

For a — oo, the infinite perturbation corresponding to deletion, Cook’s distance is
recovered as

1 h;r?

1

(1 - h;)? p6?°

(6.11)

More usually, but unimportantly, 52 would have n —p as its divisor instead of n and
be s2. It is interesting to note that (6.11) for Cook’s distance can also be obtained
by a perturbation of @ = —1/{2(1 — k;)} in (6.10): but this effect is only possible
when h; < 7. Figure 1 in Cook (1986) can be extrapolated to illustrate the effect
for likelihood distance. Also, it can be seen from (6.10) that influence at a given
descriptive confidence level will be when “a” lies outside an interval determined by
a quadratic equation in “a”; this provides a way of calibrating the perturbation
distance as discussed in Section 5.

6.2 Perturbation of Independence by Autocorrelation. To assess the
importance of the independence assumption in the standard linear model, it is
proposed to perturb the variance matrix from the unit diagonal form to a tri-
diagonal type representing first order moving average autocorrelation in the index
of the data. Because of the local nature of the analysis, and assuming geometric
decay in the autocorrelation lag, it is only first order dependence which is relevant.
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Thus, in the standard linear model notation of (6.4),

1 po O o 0

pr 1 pp - 0
(6.13) V=10 p, 1 :

: . Te- Pn-1

0 0 - ppa 1

This means that the covariance between y; and y; is 0%p; for j = i + 1 and 0 for
J > 1+ 1. As noted at the beginning of Section 6, we prefer to just perturb one
assumption at a time, and variances have been assumed constant. Symmetry of the
matrix is crucial in the time series sense of the perturbations. The p; are pertur-
bations away from 0, indexing the ¢th case; note 1 = 1,2,...,n — 1 and not n. We
thus assume in the local influence framework that p; = af;(1 < < n —1), with the
implied range of “a” being |a| < min{1/ max(positive £;), 1/ max(—negative £;)}.
Differentiating the § of (6.5) in which V of (6.13) is V(af), there is the result

/0 4 0 0 .- 0 \ r
£1 0 22 0 (T:\
) 0 £ 0 4
6[;—(‘1) =(XTX)7'XT) 0 0 £ 0 - = (XTX)'XTRe
% (a=0) €n1 :
o a0 )\
(6.14)
where

/7‘2 o o --- O \

ry r3 O
0 7rm 14
R = 0 0 T3

K() ,«Z’_‘I}

of dimension nx (n—1). Thus from (4.4), Cook’s directional curvature or equivalent
directional local distance becomes

(6.15) (TRTX(XTX) ' XTRe/52,

which may be maximised to obtain ?, as described in Section 6.1. Unlike the variance
case, the sum of the direction cosines in £ is not zero.

Finally, we consider the effects of correlation perturbations to the (4,2 + 1)th
cases. Immediately from the ith diagonal element of (6.15), Cook’s curvature for
the :th case become

(6.16) (RisrZiy + 2hiipiriripr + hipripars )67,
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The first and last terms will be large when the leverages and residuals are large;
(6.16) becomes larger when the associated off-diagonal element of the leverage ma-
trix is large, and of the same sign as the product of the adjacent residuals. The

presence of the off-diagonal term is not surprising when the effect of interest con-
cerns pairs of cases.

7. LOCAL INFLUENCE OF DATA COMPONENTS
FOR THE LINEAR MODEL

Concern now is for the sensitivity of parameter estimates to data values used
in the estimation, assuming a correct model. The local influence approach is used
to perturb data values, a logically distinct operation from perturbing assumptions.
The identification of data values upon which the parameter estimates crucially rest,
is of course, of much practical importance; it drives the process of data validation
and correction. Perturbations to response and individual explanatory variables will
be considered; the explanatory case has been fully studied by Cook (1986), although
the derivations here are intended to be slightly more explicit. First perturbations
to response values are discussed.

7.1 Perturbations to Response Values. Perturbing y to y + w gives B as
(XTX)*XT(y + w) and thus

(7.1) %"—) = (XTx)'x7,

with Cook’s directional curvature from (3.2) as
(7.2) IXXTX) ' xTe=¢THe.

Since H is idempotent, the p non-zero eigenvalues are unity. There is no unique
eigenvector in this situation and thus no unique direction maximizing the local
curvature. The eigenvectors ¢ maximising (7.2) are not functions of the responses.
The individual Cook’s curvatures are just the leverage coefficients. Also,

X B(w)

(7.3) -

=X(XTX)'xT =H,

w=0

so that the two-way table of fitted values and case derivatives is given by the leverage
matrix, perhaps a useful further way to interpet H.

Another way to perturb the response values is multiplicatively; y is perturbed
to {diag(1l + af)}y; hence

(7.4) 9b(a)

9 - (x0T XTD()e

a=0
where D(y) is the diagonal matrix with entries y. Hence, Cook’s directional curva-
ture 1is

(7.5) ¢TD(y)HD(y)!

which may be maximised to produce unique ?; the individual curvatures are then
h;y?; the use of such a perturbation scheme remains to be justified.
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7.2 Perturbations to Explanatory Variables. The values of the ith ex-
planatory variable z;, the (¢ + 1)th column of X, are perturbed to z; + w; as

previously, w is taken as af where £ is a column vector of direction cosines. Then
reasonably staightforward calculation gives

(7.6) agi“)

= (XTX)Mdir" - BiXT}e,
a=0
where f3; is the regression coefficient of r;, and d; is a column vector with 1 in the

ith position and zeros elsewhere. From (3.2), the directional curvature using (7.6)
becomes £7 M{ where

(7.7) M = (rd] — B:X)(XTX) Y (dirT - :XT) /5%
The eigenvalues of the matrix in (7.7) can be determined by writing (X7X)™! =
BT B as previously, and working with M = AAT where A = (rdT — §;X)BT. The

required maximum eigenvalue \ is then that of
(7.8) ATA = B{#?XTX + (rTr)d;dT} BT,

and the required eigenvector is Az/ VA, where z is the associated eigenvector of
AT A. Premultiplying (7.8) by BT, the required maximum eigenvalue is that of

(7.9) B+ rTr(XTX)"1d;dY.

There is one non-zero eigenvalue of the matrix (X7 X)~1d;dT which is conveniently
determined as d7 (XTX)~!d;. This latter quantity can be evaluated as 1/||z¥]||?
where z7 is the residual vector from regressing z; on the other explanatory vari-
ables, and z¥/||z¥||? is obtainable from X (XTX)~1d;, the ith row of X(XTX)™1.
Thus the one non-zero eigenvalue of (7.9) is 42 + (rTr)/||z*||?, with associated
eigenvector z¥/||z¥||2>. Retracing the eigen analysis backwards, (7.7) is found to

have a maximum eigenvalue of A% 4+ (rTr)/||z?||?, with corresponding normalized
eigenvector,

(7.10) ‘ £=(r—Bix})//rTr + Bz} 1%).
This is Cook’s (1986) important result (4.3), although our notations differ; the

elements of ¢ are proportional to the vertical distance from the line of slope B in
the added variable plot of r against x}.

8. ILLUSTRATION OF DELETION AND LOCAL INFLUENCE

This section is devoted to showing how the methods previously described work
on two exemplary data sets. The first such set concerns the record times of 35 Scot-
tish hill races in 1984, and was assembled by Dr. G. Cohen of Edinburgh University;
there are two explanatory variables, distance of race and climb. The data has been
published and more fully analyzed by A. C. Atkinson in the discussion to Chatterjee
and Hadi (1986). The regression of record time on distance and climb additively
will be taken as modelling the data. Local influence of variance perturbations will
be illustrated with this data set. A second and more classical set of time series
data concerned with the consumption of spirits from Durbin and Watson (1951)
will be used to illustrate the local influence of independence perturbations. All the
calculations can be done with standard software; Minitab macros were used here.

11



8.1 Scottish Hill Races Data. Figure 1 gives a plot of the explanatory vari-
ables, helpful in understanding leverage in the data. Cook’s distance and corre-
sponding local distance (Section 6) are compared in Figure 2; they differ only by
the leverage factor (1— h;)~2. Both distances bring cases 7 and 18 for further atten-
tion. The numerical values of the distances appear small, but the mean square error

30+ distance

- *(11) )
20+ *(35)
- . *(33)
- *(7)
- *
10+ * x *(31)
- * * %
- 2332 xk kX
(18 )2 * k% 2 *
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o mm o - e e e +climb
0 1500 3000 4500 6000 7500

FIGURE 1

Scottish hill races: Distance against climb; case numbers in paren-
theses.

2.10+ A=Cook 's distance;B=Cook's local distance;2=A+B
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0.00+ 2 22222 2 22 B2 22222 2222 22 22 222 22 22 22
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FIGURE 2

Scottish hill races data: Comparison of Cook’s distance and corre-

sponding local distance.
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52 is 215.4 which is much due to the outlying case 18 with a residual of 65.12; this
effect will be further discussed in Section 10. The direction cosines for variance
perturbations are given in Figure 3; cases 7, 18 31 33, 35°show up as being notice-

1.00+ lmax
- *(7) -
0.50+
- *(33)
0'004_ X XXk % X Kk Kk kx Kk X * X kkk kk Kk kkk X * *
- * * % . *(35)
- *(31)
- *(18)
-0.50+
pm——m————— e = - e +index
0.0 7.0 14.0 21.0 28.0 35.0
FIGURE 3

Scottish hill races: Direction cosines which locally maximise Cook’s
curvature.

ably different from zero, but not case 11 which appeared minimally for Cook’s
deletion distance in Figure 2. With reference to case 18, Atkinson noted very
plausibly, in view of its distance of 3 miles, that the record time of 1.18.39 hours
should be 18.39 minutes. Its revision removes case 18 from the essentially non-
zero direction cosines, and reduces s? to 77.50. Case 7 is still outlying with a
standardized residual of 4.16, and it is most outlying in the explanatory space, as
shown in Figure 1.

Continuing with local influence analysis, a further point from Figure 3 is that
cases 7 and 18 have oppositely signed direction cosines, indicating sensitivity to
opposite types of perturbation. Cook’s local directional distance in this Imax di-
rection is 0.81 which may be compared with the largest individual local distance of
0.64 belonging to case 7. More quantitative study of actual perturbation effects is
provided by the log likelihood distance plot of Figure 4; here “a” corresponds to
variance perturbations of the form (1 + al;)o?. The rise in the likelihood distance
is a little smaller for positive perturbations relative to negative ones; perturbations
satisfying (—0.74 > a > 1.09) will certainly move the parameter estimates out of
their 50% confidence region. Values of “a” obtained in this way can be compared
across data sets, as absolute measures of sensitivity. Conclusions are, however, still
affected by s2.

The analysis up to this point, mainly for illustration, has been on the original
data; the model used would not be very useful in practice, in spite of its 92% R?-
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FIGURE 4

Scottish hill races: Likelihood distance for perturbations in the lo-

cally optimum direction shown in Figure 3.
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FIGURE 5

Scottish hill races data: Likelihood distance as in Figure 4, but
modified data in which case 18’s record time has been changed by 1
hour and cases 7 and 33 have been deleted.
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-value, because of its high residual mean square of 215.37 mainly due to cases 18,
7 and 33. The next suggestion is to reduce the record time of case 18 by 1 hour
and after inspection of the residuals and leverage to omit cases 7 and 33. This
produces a model with a still higher R? of 99% and a much reduced residual mean
square of 22.20, with no evidence of lack of fit. For Cook’s distance, cases 11 and
6 with Cy; = 0.252, (s = 0.130, are the only ones with non-zero values, both
small and also based on the small s2. For a direct comparison with the previous
likelihood distance analysis, Figure 4 may be compared with Figure 5; the latter is
much wider, with the 50% values of “a” being given by (—1.74 > a > 1.28); thus
perturbations much larger in magnitude are required for the less sensitive modified
data.

8.2 Consumption of Spirits Data. This set of data concerns the consump-
tion of spirits in the U.K. from 1870 to 1938, with the response variable as the
annual per capita consumption and per capita income and price of spirits as ex-
planatory variables, all in log form. The data were used by Durbin and Watson
(1951) when proposing their Durbin-Watson statistic for testing autocorrelation in
regression. The model used here is of the quadratic form employed by Fuller (1976,
p. 426),

Y, = Bo + B1X1: 4 P2 Xa + Ba{(t — 1900)/30} + B4 {(t — 1900)/30}* + ¢,

where X;; and X,; are the explanatory variables. For this data set, Figure 6
gives direction cosines for independence perturbations, as described in Section 6.2.
Roughly the middle half of the data seems to be sensitive. The actual extent of the

0.25+ lmax *2
- * *
- * *
. % * % * * -
- * * %* %
0.00+ *k KKK Kk 2%% *2 2X2XQXIRD%XD
- % kX X% % *
- 2 * %k
- *
-0.25+ o
- * k%
- *
- - e e o +index
0 15 30 45 60 75
FIGURE 6

Consumption of spirits data: Direction cosines which locally max-
imise Cook’s Curvature or local distance.
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Consumption of spirits data: Likelihood distance for perturbations
in the locally optimum direction shown in Figure 7.

the effects is assessed by the likelihood distance plot of Figure 7. Perturbations
with “a” satisfying (—1.02 > a > 0.77) cause parameter estimates to move outside
their original 50% confidence region.

9. SCALE MODIFICATION IN INFLUENCE ASSESSMENT

The Scottish hill races data can be used to illustrate the strong effect of s?
on the values of influence quantities such as Cook’s distance, local distance and
likelihood distance. As used here, these quantities describe the regression parameter
B influence, but are scaled by s2; this can itself be greatly increased by a few cases
with very large residuals and thus depress the influence assessment, a self-defeating
process.

As instances of this effect, suppose the s? value of 22.20 is used in respect of all
the data; this multiplies Cook’s distance values by nearly 10 and raises cases 11 and
18 in addition to 17 above F3 32(50%) = 0.806. In respect of the likelihood distance,
the 50% values of “a” change from (—1.47 < a < 1.28) to (—0.28 < ¢ < 0.34), a
rather dramatic change. Thus, in general it seems sensible to use a robust estimate
of s? when assessing regression parameter influence; two possible estimates are
readily available in Minitab’s undocumented robust regression command rreg (see
Minitab Newsletter, KeepingTAB 12, 1988). This type of single adjustment seems
preferable to case by case deletion adjustments as employed by Belsley et. al.
(1980) and Atkinson (1985). In the present instance, Minitab’s estimate based on
the Hodges-Lehmann confidence interval reduced the s? for all the data by a factor
of two.
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10. FURTHER TOPICS

The authors’ presentation at the IMA workshop also included a preliminary
discussion of the masking effect, in relation to both deletion and local influences.
Cook’s distance was considered and the importance of the leverage quantities
hij/\/{(1—=h;)(1—h;)} and the ratio of standardized residuals was evident. The high
leverage of a case was found to be some protection against masking. A proposal was

made that the opposite effect of masking, when influence is decreased by deletion,
be called boosting.
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