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Introduction. In this note we present a proof of the fixed point theorem known as
Poincaré’s Last Geometric Theorem. This theorem states that area preserving diffeomor-
phisms of the annulus which rotate the outer boundary clockwise and the inner boundary
counter-clockwise must have a fixed point. It continues to play an important role in the
study of Hamiltonian systems, differential equations and diffeomorphisms in spaces of low
dimension (see [F2]).

Since Poincaré conjectured this theorem in his paper “Sur un théoréme de géométrie”
in 1912 [P}, there have been many different proofs from the first, given by Birkhoff in 1913
[B1] to recent work of John Franks [F1]. Franks’ version of the theorem greatly reduces
both the geometric “twist” and the analytic area preservation hypotheses to obtain a
theorem much stronger than Poincaré’s original conjecture.

The purpose of this note is to review the original work of Poincaré in his 1912 paper.
This contains not only the conjecture, but the proof of Poincaré’s theorem in some special
cases. The ideas used by Birkhoff and subsequent authors are considerably different from
those of Poincaré (except for the attempt of Dantzig, see Birkhoff [B2]). In this note we
show that Poincaré’s original ideas can be modified slightly to yield a proof of his conjecture
and give some interesting insights into the dynamics of these maps. The version of the
theorem which we prove here is much weaker than Franks’ theorem. We emphasize that
this is not a correction of Poincaré’s work — Poincaré was very clear on what he had and
had not proven. This is rather an exposition and slight extension of Poincaré’s ideas.

The authors would like to thank all those who listened patiently and assisted generously
in this work, particularly Danny Goroff. The second author would also like to thank the
Mathematics Department of the University of Cincinnati for its hospitality.
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denote the annulus, its universal cover the strip and the natural projection maps, respec-
tively.

Notation : For f : A — A a diffeomorphism, we denote a (choice of) lift for f by
f:A— A soV(z,y) € A, f(z+1,y) = f(z,y) + (1,0).

DEFINITION. A diffeomorphism f: A — A, or its lift f: A — A will be called a twist
map if

(1) f is isotopic to the identity,
(2) Vz € R, 7,(f(z,0)) < 2 and 7,(f(z,1)) > =z,

(3) f preserves an absolutely continuous finite invariant measure with support all of

A.

Remarks. 1) We have included condition (3) in the above definition to shorten the
phrase “area preserving twist map” to “twist map”. Also condition (2) is sometimes called
the “boundary twist condition”.

2) There may be several choices of the lift f which satisfy condition (2) (as well as
infinitely many choices for which it is not satisfied). We assume that both f and f are
specified.

3) The smoothness of f is not important — the theorems below hold with f a homeo-
morphism. (e.g. see Franks [F2])

4) We could also work on the infinite cylinder (or its cover R?) but the boundary curves
simplify exposition greatly.

Poincaré’s Last Geometric Theorem. Suppose f: A — A with lift f: A — A is
a twist map. Then f has a fixed point.

Remarks. This is the theorem of Birkhoff (1913 [B1]). Birkhoff later improved this
theorem, showing that such an f has at least two fixed points ([B2], see also [BN]) and
recent work of Franks [F2] have greatly weakened all of these hypotheses (see above).

Poincaré’s idea in [P] was to study the set of points in A whose y-coordinate was
not changed by the given twist map f. His goal was to show that if f has no fixed
points then this set could be used to construct a loop in A which was contained in the
exterior or interior of its image under f. Such a loop contradicts the area preservation
hypothesis and hence every twist map must have a fixed point. Hence we need to develop
some machinery for constructing the required curve. The following section developes the
topological machinery. Next the rules for the (inductive) construction of the required loop
are described.
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Topological Preliminaries and Lemmas. We will use the following;:

DEFINITION. If v : S? — R? is a continuous map, for each point z € RZ ~ 4(S') we

define the index of z to be the degree of the map S* — S : ¢ — .I_I%%)%Eﬂ where ||-|| is the

usual R? norm.

Remark. This is the usual winding number of a loop in R? (hence a continuous, in-
teger valued function on R? ~ v(S!)). For definiteness we choose orientations so that a
counterclockwise circle has index +1 about points in its interior.

DEFINITION. Let 71,72 : [0,1] — R? be two continuous arcs and let v; — v denote the
map v; — 2 : [0,4] — R? given by
7(t) f0<t<1
C=t)m(1)+(t—1)r(1) f1<t<2
(3 —t) f2<t<3 '
(4 =t)72(0) + (t = 3)1(0) f3<t<4

t—

We say 1 — v, has positive index if it has positive or zero index about every point of

R% ~ (71 — 72)([0,4]). (See Figure 1).

_ Y’(l)

—

Pl — —

oL — —— =4I

Figure 1. 77 — 72 has positive index.

Notation : For 4,6 : S' — R? simple closed loops, we say ¥ — § has positive index if
when we consider v, 6 : [0,27] — R? as arcs then 7 — § has positive index in the sense
above. (This involves a rescaling of the domain of [0,27] to [0, 1] in the obvious way).

LEMMA 1. Suppose v,6 : S — R? are simple closed loops. If there exist arcs v;,8; :
[0,1] = R2%,7 = 1,...,n satisfying

(1) Vi=1,...,n = 1,7(1) = 7i4+1(0),6:(1) = 6i4+1(0) and vo(1) = 71(0), 6a(1) = 61(0),
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(2) U 17i([0,1]) = 7(S), Ui, 6:([0, 1]) = 8(S),
(3) 4i — é; is positive index for ¢ = 1,...,n,

then v — é has positive index.
Proof. This follows easily from the additivity properties of index. [J

LEMMA 2. Suppose 7,6 : S — R? are simple closed loops with v and § both having
index +1 or zero about every point of R? ~ ~4(S!) or R? ~ §(S%'), respectively. Let
U= {z € R? ~ 4(S') : theindex about z is + 1}. If v — 6 is positive index than
§(SY) C closure (U).

Proof. Since this index of points with respect to v — 6 is the difference of their indices
with respect to v and with respect to 8, each point of positive index of § must also be a point
of positive index of 7. Since § is a simple closed curve, this implies §(S') C closure (U). [

Poincaré’s Idea for the Proof of Poincaré’s Last Geometric Theorem. Fix
f : A — A a twist map with lift f : A — A. Poincaré’s idea was to assume that f has
no fixed points, then construct a curve L C A which is either a simple closed loop, or has
7(L) a simple closed loop in A, such that L — f(L)( or n(L) — F(x(L))) has positive index.
This contradicts the assumption of area preservation for f because lemma (3) implies that
the region “inside” L( or 7(L)) will be mapped inside itself by f (or f). (see Figure 2).

(L)

Figure 2.

To describe Poincaré’s construction we need to define

IF'f=T={z€ A:7m,(f(2)) =my(2)}.

Typically, I’ will be a nice set. In fact, we have
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LEMMA 3. The twist maps f : A — A satisfying the following conditions are dense in
the C? topology.

(1) Ve >0,T'sN{(z,y) € A:e <y <1—¢,0< 2 <1} is an immersed one manifold
with finitely many components.

(2) Ve > 0,TsN{(z,y) € A:e <y <1-¢,0< 2z < 1} has finitely many points with
tangent parallel to (0, 1), all with different y coordinate,

(3) Ve > 0, the sign of my(f(z)) — my(z) is different between any two adjacent compo-
nents of {(z,y) € A:e<y<1l—e}~Ty.

Proof of lemma 3. We recall a few facts from transversality theory. For more details,
we refer to [DeM, P], chapter 1, of which the following is taken (replacing C* by C*').
Let A, M, N be manifolds and let F: Ax M — N be a C! map. For A € A, we denote

by Fy : M — N the map defined by Fx(p) = F(\,p). Let S C N be a C! submanifold
and let T's C A be the set of points A such that F) is transversal to S.

ProOPOSITION (3.3 P.25 IN [DEM, P]). If F: A x M — N is transverse to S C N,
then Ts is residual in A.

We can replace C*® by C?, by using the C'' version of Sard’s theorem which is the
cornerstone of the proof of the proposition. To apply this proposition in our situation, we
will consider the map:

F:R*x A, - R defined by
F(\ p,2,y) = my(gau(z,y)) — ¥

where A, = {(z,y) € A | e<y<1—¢0<a<1}andgy, is the monotone twist map
generated by the function Hy,(z,%) = 5:(2 —z)? —l—2—’\1r cos 2w + #- sin 27z where A and p

are 0(e?), Hy, can be extended to all of A in such a way as to generate a monotone twist
map gy, satisfying:

Iaula(z,y) = (z + e(y — Asin27a + pcos2ra),y — Asin 27z + p cos 27z)

Irulac,,(z,y) = (¢ +ey,y)

hence gy, o f is a twist map and ||gx, © f — f|lc2 ~ 0(¢) (One continues the constant A, u
as functions of (z — z) satisfying ||A||c2, ||¢]lc2 ~ 0(¢e) and with graphs of the form:

Denote by fi(z) = 75 f(z), f2(z) = my f(2). Then, on R? x A, we have:

F(Ap,2) =
fa(2) = Asin(27 fi(2)) 4+ pcos(27 fa(z)) — my(2)

We need to show that, for a generic set of A, u, F is transverse to the 0-dimensional manifold
{0}, i.e., according to the proposition that DF is always onto R.
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But

OF

a(,\,u,z)z sin(27 f1(2))

)= cos(2nfi(2)

which can’t be simultaneously 0.

Hence, for generic values of (A, p), (;1”)(0) is a 1-dimensional manifold. The proofs of
the other two statements are similar. For the second statement, one consider the 0 set of
the map A — R? given by:

z = (fo(z) — my(2), fé(z))

One needs 4 independent parameters to unfold the singularities. Take:

1 9 A L
i = —(Z —2)” + — cos 2wz + — sin 27
hauxi 26(1 )+ 57 + 5 Sin 2me

+ E cosdrzx + 4—’; sindrzx

we leave the details to the reader. []

Also, we can easily see that the structure of I' is related to the fixed points of f by the
following:

LEMMA 4. Suppose f:A— Aisa twist map. Then there exists an € > 0 such that
if T' contains a (connected) component I'y C I'y which connects the line y = ¢ to the line
y =1—¢ then Iy contains a fixed point of f.

Proof. When ¢ > 0 is sufficiently small we have Vo € R, 7,(f(z,¢)) < z and 7, (f(z,1—
€)) > x. But, if 'y connects y = € to y = 1 — ¢ then for some z¢,2; € 'y, we have
7z(f(20)) < mz(20) and 7x(f(21)) > m.(21). So, by continuity, there exists z € I’y with
7z (f(2)) = mz(2). But then z is the required fixed point because z € 'y implies 7, (f(z)) =

my(2), s0 f(z) = z. O

Now, the loop L above will be constructed from segments of I' and horizontal (y =
constant) line segments contained in lines tangent to I' such that each segment ¢ C L has
¢ — f(¢) positive index. Poincaré’s method was to construct a large, oriented graph in A
from segments of I' and horizontal segments in lines tangent to I' with edges oriented so
that an edge minus its image under f has positive index. If this graph contains an oriented
loop then this is the required loop L. Unfortunately, Poincaré could not show that his
directed graph contained an oriented loop (although he worked out numerous examples
which yielded the required loop).



He states that if there is no such loop, he could construct a counterexample to the
theorem. (Hence, he showed the existence of the loop in his graph is equivalent to the
fixed point theorem).

We alter the construction slightly, building the curve L by adding arcs ¢; inductively
to a curve in A such that £; — f(¢;) has positive index and ¢; is either an arc of " or a
horizontal segment on a line tangent to I' with end points in I'. When this curve closes
(as it must by the generic finiteness assumption on I') in A or A, the resulting curve will
be the required loop. This is really just a slight modification of the last step of Poincaré’s
construction.

We note that if we can prove the theorem for maps satisfying the conditions of lemma
3, then the theorem for arbitrary twist maps follows by the usual limit arguments (i.e., the
limit of maps on a compact space having fixed points will have a fixed point).

Construction of L. Fix a twist map f : A — A with lift f : A — A which satisfies the
conditions in Lemma (3) (i.e., I is made of smooth arcs etc.). We assume, for contradiction,
that f has no fixed points. We will construct the loop L € A discussed above by piecing
together inductively arcs ¢; such that ¢; — f((;) are positive index. The arcs ¢; will be
pieces of I or horizontal segments on lines tangent to I', so eventually this curve will form
a loop in A or its projection will form a loop in A. The steps in this construction are the
following:

I) Orient and label the components of T and A ~ T,
IT) Describe the rules for choosing €, 41 given o, ..., {n,
III) Prove that £, exists and £,4; — f(£,41) has positive index,

IV) Show the construction yields the required loop.

Step I: First we label the components of A ~ T either “up” , if my(f(2)) > my(2) or
“down”, if my(f(2)) < my(z) for z in the component.

Next we label components of I' as either “left” if 7,(f(z)) < m.(z) or “right” if
72 (f(2)) > mz(z) for z in the component. To orient components of I' we first attach
to each point z € I' a vector n, normal to I such that if z is on a left component of T
then n, points into an up region of A ~ I" while if z is on a right component of " then n,
points into a down component of A ~ I'. Now we orient components of I' by choosing a
vector tangent to I at z € T, called t., such that (t,,n,) has the same orientation as the

standard basis ((1,0),(0,1)). (See Figure 3).
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Next we must break I' into two disjoint subsets — the points of I' whose tangent vectors
are rotated by f a large amount and those for which the tangent vectors are rotated only a
small amount. The fact that f preserves the y coordinate of I' will allow us to distinguish
“large” from “small” amounts of rotation as follows: To each non-zero tangent vector on A
assign an angle given by the absolute value of angle between the vector and its image under
the derivative of f. In order to remove the ambiguity mod 27 in this choice we require
that the tangent vectors tangent to the boundary are assigned zero (they are preserved by
the derivative of f, hence have angle 2n7 for n € Z — we choose n = 0) and we require
the choice be continuous in A (hence some angles might be larger than 27, etc.). Now we
divide I' into two pieces

Iy ={z €T': the tangent vector t. is rotated by less than =
by the derivative of f }.
I'r={z €T : the tangent vector t

t. is rotated by 7 or more
by the derivative of f }.

ThenI' =Ny UT'g and 'y NT'g = 0. (See Figure 4.)
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Figure 4.

Remark. We will see that the segments of I' we use in the following construction are

all contained in the “non rotating” part I'y of I

Step II: The construction rules are the following: Rule (0) yields ¢y while rules (1-3)
yield 2,41 given o, ..., 0,:

0) £ is formed by choosing z € A ~ I" within ¢ > 0 of the upper boundary of A ~ T
(where ¢ is chosen so that the rotation of all tangent vectors by Df is small) for points
within & of the boundary of A, and proceeding horizontally to the right if z is in an up
region or left if z is in a down region of A ~ I' until a component of I' (which must be in
I'y) is encountered.

1) If n is even, so ¢, is a horizontal segment from end points zg in £,—; to z; in I', then
£y+41 is formed by following I' from z; in the direction of the orientation assigned in step I
until either a point of horizontal tangency is encountered or a “jump point” as described

below in rule (2) is encountered.

2) If n + 1 is odd, so £,41 is being formed by following a component of I' as in rule
(1), we identify two types of “jump points” as follows;

type 1: Suppose £, is on a left component of T', a point z of ¢, is called a jump point
if there is a point w € I with

e) w is on a left component of T',

o) my(z) = my(w), mx(z) > mu(w) and mu(f(2)) < mu(f(w)),

o) if Zw is the horizontal segment connecting z and w then f(zZw) is homotopic
to f(z)f(w) rel f(lny1)U {f(w)} (see Figure 5).

type 2: Suppose £,41 is on a right component of I', a point z of £, 4, is called a jump point
if there is a point w € ' with

¢) w is on a right component of T,

o) my(2) = my(w), Tx(2) < mp(w) and 7, (f(2)) > 7 (f(w)),

9



o) if Zw is the horizontal segment connecting z and w then f(Zw) is homotopic
to f(2)f(w) rel f(£,41) U {f(w)}, (see Figure 5).

If while constructing {,,+1 a jump point z is encountered then ¢,4; is continued by the

segment Zw then following I' from w in the direction of the orientation of step I (then

return to rule (1)). (see Figure 6).
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Figure 5.

Figure 6.

3) If n is odd, so £, is made up of segments of I' and horizontal segments from jump
points and ¢,, ends at a point zy of horizontal tangency of I', then ¢,4, is formed by the



longest horizontal segment beginning at 2o in the direction of the tangent to I' at zo so

that
i) £n41 — f(€n41) has positive index,
ii) both end points of I' are in I'y,
iii) neither end point is a jump point (as in rule (2)),
iv) segments of {41 in A ~ I' nearest the end points are either both in up or both in
down components of A ~ T,

We give the following examples in Figure 7. These should be compared with the figures in
Poincaré [P], however, we warn the reader that the labelling of T is different here.
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Step III: Next we must show that the rules above produce the desired curve. That 1s,
we must show that there is always a horizontal segment satisfying the conditions of rule
(3) and that the curves ¢ created by rules (1) and (2) have ¢ — f(£) positive index. We
begin with two lemmas giving examples of positive index arcs.
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LEMMA 5. Suppose ( is a horizontal segment with end points z1, 29 € I' and interior in
A ~ T oriented from z, to z;. Then if the signs of m,(z1) —m,(22) and m,(f(21)) — 72 (f(22)
agree and { is in an up component of A ~ I if m,(z;) < m(22) or £ is in a down component
of A~T if my(23) < my(21) then £ — f(£) has positive index.

More generally, let v be a curve in A satisfying the following:

(1) myy(0) = myy(1) and m,y(1) > m,7(0)

(2) my(e) > myy(0)

(3) ~ is homotopic to the segment £ = v(0)v(1) rel {7(0),v(1)}

(4) The interior of the lift of 4 in the universal covering of A ~ {v¥(0),v(1)} does not
intersect the lift of 4(0)y(1) to which it is homotopic.

Then the curve £ — v has positive index.

Remark. The types of curves v allowed by the second portion of the lemma are precisely
those specified by requiring ¢ — v to be positive index. They are those for which the
intersections of £ with v occur with non-zero winding (see Figure 8).

This lemma seems to be a particular case of a more general property of Jordan curves

! )
where one would consider whether such a curve self intersects ”from inside” or ”from
outside”. ”Outside” intersections add index, "inside” ones can give negative index. We can
tell the "inside” intersection from the "outside” by looking at lifted curves in te appropriate
covering spaces as in the statement of the lemma.

Proof. This follows recalling that positive index is counterclockwise (see Figure 8). []

LEMMA 6. Suppose ¢ C T' is an arc with end points z; and z, oriented from z; to
zo such that the interior of { contains no points of horizontal tangency of I'. If £ is on
a left component of T' and my(z1) < my(z2) or if ¢ is on a right component of ' and
my(21) > my(22) then £ — f(£) has positive index.

Proof. Again, follows from the choice of orientation (see Figure 9.). ]

In the next 3 lemmas, we show that with two additional assumptions, there will be
horizontal segments satisfying the conditions of rule (3). Rules (3) i and iv are treated in
lemma 7, rule ii (and more) in lemma 8 and lemma 9 deals with iii.

LEMMA 7. Suppose n is odd so that ¢, contains components of I' and ends at a point
zo of horizontal tangency of I'. Suppose also that

a) zg € I'y, the non-rotating part of I.

b) if the tangent to T" at zy points right then it points into an up region of A ~ T, if
left then it points into a down region of A ~ T'.
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Then there is a horizontal segment (,, | satisfying rule (3) i and iv.
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Proof. Suppose the tangent to I' at zo points to the right. Let Ro be the horizontal
ray beginning at z, and extending to the right and let R; be the horizontal ray starting
at f(z0) and extending to the right.

Claim . By condition (a) of the Lemma, f(I2) will be homotopic to Ry rel f(£y).

Proof of claim. (see Figure 10). If we form the suspension of fin A x[0,1] then we see
that the points to the far right must stay to the right of &, and f(£,). Since the tangent
vector to I' at zo does not rotate and the image of Ry must be as in the claim. [

Since f(Ro) must cross Ry infinitely many times,

there must be a point f(z1) in f(Ro) N Ry such that the points to the left of z; are in
an up component and such that f(Zgz1) is homotopic to f(z0)f(z1) rel f(€n) U f(21).

condition (b) and lemma 5 complete the proof (See Figure 10.). The other case is
symmetric. []
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Next we consider the type of components of I' on which ¢,,4; of the above lemma can
end. In particular, we prove that ¢, satisfies condition ii of rule 3).

LEMMA 8. Suppose n is odd and (,, satisfics conditions a and b of
lemma 7, then the end point z; € T of (4, which is not in ¢,, will be in 'y and if it

is on a left (respectively, right) component of T' then the tangent to I at z; will point up
(respectively, down), 1.e., will have positive, (respectively, negative) y component.

Proof. Since the segments of ¢, 4| nearest the end points are either both in up region
if £,4+1 is oriented to the right or both in down regions if it is oriented to the left, the rules
of orientation of I" imply that left (respcctively, right) component of T at the end of £,,41
will be oriented upward (respectively, downward).

16



Since the beginning point of £, is in I'y by assumption, it follows that the end point
must also be in Iy, since ending at a point in I'p would not satisfy €,,41 — f(£,+1) having
positive index, (see Figure 11). ]

" 1
7{:_ ’ 0
4
\“I e If};’)
daer,

Figure 11. In both cases, ¢, 4, must end in I'g not in .

Finally, we must show that there is always a choice of ¢,4; satisfying the conditions

of rule (3)iii.

LEMMA 9. For n odd, assuming (,, satisfies conditions a and b of lemma 7, there exists
a horizontal segment €,y satisfying the conditions of rule (3).

Proof. Let a be the end point of ¢, in I' and Ry the horizontal ray pointing in the
direction of the tangent at a. We assume « is in a left component of I'. Then since f
preserves orientation, there will always be horizontal segments £,4, satisfying i,ii, and iv
of rule 3 as was found in lemma 7 and 8. We note that such an ¢,4; will have f(€p41)
homotopic to the segment on the right pointing ray connecting the end points of f(€n+1)
fixing the end points, rel f(£,). If such a segment is chosen and it does not satisfy condition
iii, then it may be extended to satisty all of i-iv when Ry points to the right. If Ry points

to the left then either ¢, ; may be extendcd to satisfy i-iv or the point a is already a jump
point. (See Figure 12). [
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Next we show that for n odd, the arcs ¢, will end at points of I y. (assumption (a) of
lemma 7).

LEMMA 10. Suppose n is odd and that (,, has its last segment with interior in Iy and
1s either upward oriented left or downward oriented right component of I'. Then the end
point of £, at a point of horizontal tangency of T" is in I'y.

Proof. Suppose not. We assume (,, is in an upward oriented left component of I'. Then
the local picture near the end of ¢, is as in Figure 13.

Now case (a) does not occur because the component of A ~ I' to the left and above £,
must be up. Hence we need only consider case (b). Now we consider the continuation of
I’ after ¢,. Since its image is trapped by the image of the horizontal ray, we see we must
have I" again crossing the line horizontally tangent to I' as in Figure 14.

In either case, points before the end poiut of €¢,, are jump points. Hence rule (2) would
apply before the point of horizontal tangency was reached. The case where £, is on a
downward oriented right component of I' is symmetric. ]
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Finally we must study the jump points, particularly the horizontal segments from a
jump point and the character of the component of I' on which it ends.

LEMMA 11. Suppose n is odd so that (, is being formed by following I'. Suppose z is
a jump point of ¢, and the component of I in ¢, NI ending at z is either upward oriented
left or downward oriented right in T'y. Let w be the point to which z jumps (as in rule

(2)). Then
1) w is a local min of T if z is a left point or a local max of T' if z is a right point,
2) the component of I' which is connected to w in the direction of the tangent to w 1s
upward oriented left if z is left, downward oriented right if z is right and is in 'y,

3) The segment zw is positive index (i.e. Zw — f(ZW) is a positive index loop).

Proof. Condition (1) follows because ¢, does not begin at a jump point (see lemma
9), hence jump points arrive only when w is a point of horizontal tangency of T'.

Condition (2) follows by the choice of orientation in step I and the fact that any rotation
of the points in the same component of T' as w and near w would result in jump points on

¢, before z.

Condition (3) follows exactly as lemma (5). 0
Step IV: To complete the proof we note the following:

o) for n odd, the portion of ¢, contained I' are all in I'y (rule (3) and lemma 8, 11).
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Figure 14.

o) for n odd, if ¢, is in left components of I' then it is oriented upwards, if ¢, is n
right components of ' then it is oriented downwards (lemmas 7,3,10).
o) £, — f(£,) is always positive index (rule (3) and lemmas 5,6,7,8,10,11)
o) if we construct the segments Co,...C., ... as above, eventually a closed loop is
formed (lemma (3) genericity assumption on I').
This closed loop is the required loop L which by lemma 2 completes the proof for maps
satisfying the genericity assumptions of lenuna 3. Again noting that the limit of maps on
with a fixed point will have a fixed point, we obtain the desired result.

Concluding remarks. 1) The second theorem of Birkhoff actually yields two periodic
orbits. Poincaré conjectures existence of two fixed points, but he only discusses the case
of “generic” T'. We do not know if there is a direct proof of existence of the second fixed
point using these techniques.

2) It would also be interesting to know what T' looks like for a generic twist map.

Computer studies show it can be quite complicated, even for simple maps.

[S™]
—
fan]
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