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SHUI-NEE CHOW{, X1A0-B1ao LiNni AND KENING LUjf

§1. Introduction.

One of the most useful properties of dynamical systems is the existence of invariant
manifolds and their invariant foliations near an equilibrium or a periodic orbits. These
manifolds and foliations serve as a convenient setting to describe the qualitative behavior
of the local flows, and in many cases they are useful tools for technical estimates which fa-
cilitate the study of the local bifurcation diagram (see [6]). Many other important concepts
in dynamical systems are closely related to the invariant manifolds and foliations. In finite
dimensional space, the relations among invariant manifolds, invariant foliations, A -lemma,
linearization and homoclinic bifurcation have been studied in [11]. It is well known that
if each leaf is used as a coordinate, the original systems is completely decoupled and the
linerization follows easily (for example, see [27] and [22]).

As a motivation, let us consider a linear system in R™*"
u = Au, u € R™

v = Bu, v € R"
with Reo(A) > v > Reo(B), where A and B are matrices, 0(A) and o(B) are spectra of
A and B with Re denoting the real parts and 4 € R is a constant. For a given uy € R™,
after ¢ > 0 the n-dimensional submanifold
M, = {(u,v)|u = ug,v € R"}
is carried by the flow to a new submanifold
M, = {(u,v)|u = eup,v € R"}.

Moreover, if (u;,v;) and (ug,v) € My, then

[(e®ur, eBlur) — (e*uq, ePlvy)|| = O(e??), ast — +oo,
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while points not in M, depart more rapidly than Ce, as t — +o0o. Thus, we are able
to group points in R™*™ as equivalent classes according to their asymptotic behavior as
t — 400, and each asymptotic class is a submanifold u = constant. We expect that these
observation will persist after the adding of small nonlinear terms.

Let X be a Banach space, ¥ € R and T(-,-) : X x Rt — X be a nonlinear semigroup.
We say that W2 is a y-stable fiber if |T(z;,t) — T(z2,t)| = O(e™*) as t — +oo for any
z1, x3 € W5. We use W3(z) to denote a y-stable fiber passing through z € X.

Let Y C X be such that the backward flow T(.,.); Y xRt — Y is uniquely defined. We
say that W2(y) is a y-unstable fiber passing through y € Y if |T(y1,t) —T(y2,t)| = O(e™ ")
as t — —oo for any y, y2 € WJ.

If W2 is an invariant manifold, we say W7 is a y-stable manifold. Similarly, we have
v-unstable manifolds. It follows from the definition that v-stable (respt., y-unstable) fibers
are invariant under the forward (respt., backward) flow T, i.e.:

T(W3(z),t) Cc Wi(T(z,t)), fort € RY,

T(Wi(y),t) C WY (T(y,t)), fort € R™.

The purpose of this paper is to show that for some dynamical systems generated by
partial differential equations, W3 (z) and W¥(y) are manifolds and to study the smoothness
of those manifolds. We are also interested in the smooth dependence of W3(z) (or WJ}(y))
on z (or y).

The smoothness of the invariant foliations suffers from two restrictions. First, if the
nonlinear term in the equation is C¥, each fiber can only be a C” submanifold with r < k.
Secondly, there is a gap condition which requires that a gap between the real part of the
spectrum of the linear equation has to be large compared with the module of the nonlinear
term. The examples given in [9] show that if the gap conditions fail, then the invariant
manifolds lose smoothness. It is well known that these gap conditions are always satisfied
in the study of center, center-stable and center-unstable manifolds (see (3], [5], [6], [7],
[20], [19],[21], [24] and [30]). Thus we are able to obtain the same smoothness, i.e., r = k.
See, for example, [6], [7], [30], and [31]. The theorems we will give are closely related
to the theory of inertial manifolds and generalize some recent results. For the theory of
inertial manifolds, see [9], [10], [13], [15], [16], [17], [22], [25], [26], also see books Hale [18],
Temam([29], and their references.

More delicate is the smooth dependence of W3(z) (or Wi (y)) with respect to x (or y).
Here we do not have C* dependence on x (or y) even if the vector field is C¥, otherwise
we would have obtained a C* linearization theorem which is in general not true (see [28]).
A general condition will be given in this paper which is similar to the gap condition we
mentioned before. Accordingly, we can prove under very general assumptions W3(z) is
Holder continuous in z. And in some special cases, such as Res(A4) < 0, then W3(zx) is
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CF-! with respect to z. In general we do not have a C*~1 foliation of whole space but
we do have a C*¥~! foliation on the center-stable manifold W¢* and the center-unstable
manifold W¢*. For application of this fact see [6] and [12].

There have been some geometric proofs of the invariant foliations ine finite dimensional
spaces, which are based on the concept of graph transforms, see [2], [14] and [21] for
example. Ours is an analytic proof which is based on the variation of constants formula
(i.e., Liapunov-Perron formula) and generalized exponential dichotomies for semiflows in
infinite dimensional spaces (see [20]). After an integral equation is written, the smallness of
the nonlinear term usually guarantees the existence of a fixed point of the derived mapping
by contraction mapping theorem. The smoothness of the fixed point with respect to the
parameters is then studied from the integral equation. This allows a unified treatment of
the whole problems.

We introduce the main notations and definitions in Section 2. Section 3 contains some
basic theorems and lemmas which will be used throughout the paper. A study of the
abstract parabolic evolution equations is given in Section 4.

§2 Notations.

Let X and Y be Banach spaces and U C X be an open subset. We define the following
Banach spaces

(1) For any integer k > 0, define the Banach space

C*(U,Y) = {f|f :U - Y is k — times differentiable and
D! fisbounded and continuous for0 <: < k}

with the norm ||f||x = Zf:o sup,cy |D'f(z)|y, where D is the differential operator.
(2) Let 0 < @ < 1, we define the Banach space

che(U, Y)={f e C*U,Y)||D*flo = sup |D¥f(z1) — D* f(z4)y < o)

T1#To le - 332[?(

with the norm |f|k,o = |f|k + |D*fla. For simplicity, we will write C* for C%°.
(3) Let ¥ € R and 7 € R be fixed. We define the Banach space

EZ(7,X)={f:(—00,7] = Xiscontinuousand sup [e? f(t)|x < oo}
te(—oo,7]

with the norm IflE:(y,X) = SUPye(—oo,r) €T F(B)Ix,
(4) Similarly, we define the Banach space

Ef(y,X)={f:[r,00) = Xiscontinuousand sup |e"* f(t)|x < oo}

t€[r,00)



with the norm |f| g+, x) = SUPe[r,00) leY f(1)|x,

(5) We use L¥(X,Y), k > 0, to denote the Banach space of all k-linear maps from X to Y
with the norm |- |px(x,v)-

(6) Let n > k > 0 be integers and A be an index set. Let M™ be a n-dimensional manifold
and M§, A € A, be k-dimensional submanifolds of M". We say that M™ has a C"
foliation indexed by A € A if M™ = UyeaMF and MY are mutually disjoint. Each M}
is called a leaf through A € A and is a injectively immersed connected submanifold.
Moreover, M" is covered by C" chart ¢ : D*¥ x D% — M™ with ¢(DF x y) C M¥,
where ¢(0,y) € MY and D® is the unit s-dimensional disk. Let =(t,z),t > 0 and
z € M™ be a semiflow on M™. The foliation M™ = Uxep MY is said to be invariant
under 7 if w(t, M¥) is contained in a leaf for every ¢t > 0.

§3 Main Results.

Let X, Y and Z be Banach spaces. Assume that X C Y C Z, X is continuously
imbedded in Y and Y is continuously imbedded in Z. Let T'(¢,s) be an evolution operator
on Z, which means that T(t,s) € L(Z,Z) (t > s) is defined on interval J C R; ordinarily
J =R or [r,00) or (=00, 7] and satisfies : (a) T(t,t) = I = identity; (b) T(¢,s)T(s,r) =
T(t,r)ift > s>r; (c) T(t,s) is strongly continuous in (t,s).

We say that T'(t, s) has a pseudo-dichotomy on the triplet (X,Y, Z), or on Z for short,
if there exist continuous projection P(t),t € J and constants o, > 0,a < 5,0 < p <1
and M; > 0,: = 1,2,3,4, such that
(i) T(t,s)P(s) = P(t)T(t,s),t > s, T(t,s)Y C X,t > s, and R(P(t)) C X, where R(P(t))

denotes the range of the operator P(t),

(ii) the restriction T'(t,s)|r(p(s)),t =  is an isomorphism from R(P(s)) onto R(P(t)), and

we define T'(s,t) as the inverse map from R(P(t)) to R(P(s)),

(iii) the following equalities hold

(3.1) IT(t,s)P(s)z|x < Mye ®9|z|x, fort<s
(3.2) IT(t,s)P(s)ylx < Mpe™®(yly, fort<s
(3.3) IT(t,s)(I — P(s))z|x < Mye PU=9|z|x, fort>s

(3.4) |T(t,s)(I — P(s))ylx < My(t —s)"Pe PU=|y|ly, fort>s.

REMARK. Condition (3.4) is a smooth property of the evolution operator T(t,s). Con-
dition (ii) is not very restrictive since in many cases the unstable space is finite dimensional.
Let 7 € R and J = (—o0, 7]. Define an operator L as

t

(3.5) (LF)() = / T(t, 5)P(s)f(s)ds + / T(t, $)Q(s)f(s)ds,

T -—

where f € E;7 (v,Y),a <~ < 3, and Q(s) = I — P(s).
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LEMMA 3.1. If T(t,s) has a pseudo-dichotomy on Z, then the operator L defined by
(3.5) is a bounded linear operator from EZ(v,Y) to E; (v, X) and the norm of L satisfies
the following estimate

||L|| < I{(ﬂ e F20 B a,P),
where K : (0,00) x (0,00) x [0,1) — R¥ is defined by

(3.6) K(a,b,c) = Mgb™" + M,f =
Proof. By using (3.2) and (3.4), we have that

ILflE?(‘Y,X)S o {/ " |T(t, ‘*)P(S)f(S)des+/ e'|T(t, 5)Q(s) f(s)| xds }

(—o0,7] 0o

< My(y — CY)— + M4

(ﬂ v)PL

This completes this proof. []

LEMMA 3.2. Suppose thata < vy < 3, u : (—o00,7] — [0, 00) is continuous, sup t < Te?u(t) <
oo and satisfies fort < 7

t 4
(3.7)  u(t) < Cie "7 4 0y / ety (s)ds + Cs / (t — s) P P=9y(s)ds,

where Cy,Cy and C3 are positive constants satisfying

(3.8) Ca(y —a)™! +C'3 (ﬁ 7P <1
Then
(3.9) ut) < (1= Co(y1 — )™ = )P e

for any v1, a < v1 < B, satisfying

2_
Colm —a) '+ Cs T f;(ﬂ -m)f <L

Proof. Without losing generality, we assume 7 = 0. We will prove that if v(t), t <0,
satisfies that

t
(3.10)  w(t) = Cre™ T 4, /

T

¢
e~y (s)ds + C3 / (t — )" Pe PU=9)y(s)ds
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and sup, <, [e"*v(t)| < oo , then

2 —
LB =) e

0 S v(t) S (1 - Cz(")/l - Cl{)—l - Cg

and u(t) < wv(t) for t <O0.

By using the contraction mapping theorem and (3.8), we have that (3.10) has a
unique solution v(t) satisfying sup,<q [e”*v(t)| < co. If v(t) < O for some t = o, then
inf;<o{ev(t)} < 0. Hence

2-p

et o(t) > Ce™ I L (Cy(y —a) 1 +C T,

B-v"" }rsl(f) e'v(t)

Thus e”*v(t) > 0. This is a contradiction and proves that v(t) > 0.

For 71, (3.10) has a unique solution w(t) which satisfies

2

w(t) < (1= Colm —a)™' = Cs 1 : Z(ﬂ — )P H)TICe M,

By the uniqueness, we have that v(t) = w(t).

Next observe that

u(t) — v(t) <Cy / e~ =) (y(s) — v(s))ds
(3.11) +Cs /_ (t — ) "Pe A=) (u(s) — v(s))ds.

If u(t) — v(t) > 0 for some t = tq, then

ilél(:)){ew(u(t) —o(t))} > 0.

From (3.11), we have that

2 —

THu(t) = v(t)) < (Caln — @) + Gy =2(8 = 1)) supe™(u(t) = (1))

By (3.8), e™(u(t) — v(t)) < 0. This contradiction proves that u(t) — v(t) > 0 for some
t = to 1s impossible. This completes this proof. []

Let A be a Banach space. Let 7 € R and J be either the interval (—oo, 7] or the interval
[7,00). Consider the following nonlinear map

F:IJxXxA->Y.

We assume that the nonlinear operator F' satisfies
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HYPOTHESIS A. F is a continuous mapping from J X X x A to Y with bounded
continuous Frechét derivatives DﬁlD},{?F(t,u,/\) with respect to uw and A, ky + ko < k,
where k is a given positive integer.

For the above nonlinear mapping F with J = (—o0, 7|, we consider the following
nonlinear integral equation

u(t) =T(t,7)P()€ + / T(t,s)P(s)F(s,u(s),\)ds
(3.12) T

+ / T(t,s)Q(s)F(s,u(s), A)ds,

— 00

where ¢ € X,u € EZ(7,X) and A € A. We assume that T(t,s) is an evolution opera-
tor with a pseudo-dichotomy on Z. It is not hard to see from the definition of pseudo-
dichotomy and Hypothesis A that the right hand side of (3.12) is well defined.

Our first theorem is

THEOREM 3.3. Assume that the evolution operator T(t,s) has a pseudo-dichotomy
on Z and F satisfies the Hypothesis A with J = (—oo,7|. If there is v > 0 such that

(3.13) a<y<ky<Bp,

(3.14) K(B —ky,y—a,p)Lip, F <1,

where Lip, F is the Lipschitz constant of F' with respect to u, then we have that for every
(§,)) € X x A the integral equation (3.12) has a unique solution u(.;€,\) € E7(v,X)
which has the following property:

u:X xA— E;(ky,X)
is a C* mapping.

REMARK. The condition (3.13) describes the spectral gap. The examples in [9] imply
that if the condition (3.13) fails, then the solutions of (3.12) will lose smoothness. We
will apply this theorem to get invariant manifolds for evolutionary equations in the next
section.

Proof. Let F(u, &, ) be the right hand side of (3.12), i.e.,
Fu, &, 0) =T(t,7)P(1)¢ + / T(t,s)P(s)F(s,u(s),N)ds
i [ Tt 9)QUs)F (s, u(s), N)ds.
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From the definition of pseudo-dichotomy and the Hypothesis A on F with J = (—o0, 7]
we have that F is well defined from E_ (y,X) x X x A to EZ(v,X) and is continuous.
Furthermore, for £;,£; € X we have that

|F(u, €1, A) = Fu, &2, M)l p- (4, x) < Mie7[6 — &2 x.
For each u,u € E; (kvy,X), by using Lemma 3.1, we have that

|3-(ua 61 ) )‘) - ff(ﬁ, 627 ’\)IE; (v, X)

S K(B—7v7—ap)LipFlu—t|g-(, x)
Since K(B8 — 7,7 — a,p)Lip,F < 1 from the assumption of this theorem, we have that
F is a uniform contraction with respect to the parameters £ and A. Using the uniform
contraction principle, we have that for each ({,A) € X x A F(-,¢£,A) has a unique fixed
point u(+;¢,)) € E7(v,X) and u(+;€, ) is jointly continuous in (€, A) and is Lipschitz
continuous in . Moreover, we have that

M] e

3.15 €1, A) —u(5€2,N)| g- < - .
( ) |u(’€1’ ) u(aﬁ?v )|ET (v, X) = 1—1{(ﬂ_7,7—a,P)LiPuF|£l ‘52|X
In other words, u(t;¢£, ) is a solution of (3.12) which satisfies (3.15). Next we want to
show that u is C¥ from X x A to E-(kvy,X). We are going to prove this by induction

on k. Here we should mention that the method which we are going to use to show the
smoothness of the solution u is different from those used in [7], [8] and [9].

First let us consider k = 1. Since K(8 — v,y — «, p)Lip, F < 1, there is a small 6 > 0
such that o <y — 26 and

(3.16) K(B = 71,71 — a,p)LipyF < 1, fory — 26 <7 < .
Using Lemma 3.2, we have that u(.; €, \) € E-(y1, X)fory — 26 < 71 < 7. Let
F={ [0t )PIFS, (5561, ) = F(s, 53600, )
' — DuF(s,u(s; 2, 1), N)(u(s3 1, 3) — u(s; €2, A))lds
+ T, )@ (s, (s 0, 0), A) — Flsu(ss €2, 4), )

— DuF(s,u(s; €2, ), A)(u(s; €1, A) — u(s; €2, A))]ds}.
We claim that [I| -, _s x) = o(|&1 — £2|) as £ — &. Using this claim, we have that
u(+5 €1, A) — (562, A)

- / T(t, 5)P(s)Du F (s, u(s; €2, A), A)u(s; €1, A) — u(s; 2, A))ds

—/ T(t,s)Q(s)DuF (s, u(s;62,A), A)(u(s; €1, A) — u(s;62,A))ds

=T(t,7)P(r)(& — &)+ 1
(3.17) =3(& — &) + o(|&1 — E2lx), as &y — &o,
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where § = T(t,7)P(7) is a bounded linear operator from X to E7(y — 6,X). Let
Lf = /t T(t,s)P(s)Dy,F(s,u(s;€2,A),A)fds + /t T(t,3)Q(8)D,F(s,u(s;€z,A), A)fds.
Using (3.16) and Lemma 3.1, we have that £ is a continuous linear operator from E (y —
6, X) to itself and |L|} - (y_5.x) E- (v—6,x)) < 1- (3.17) implies that

(561, 0) —u(+562,0) = L713(& — &) + o(lér — &lx), aséy — &

This implies that u(-;€, \) is differentiable in £ and its derivative satisfies
t
Deu(t;6,0) =T(t,7)P(1)+ / T(t,s)P(s)DyF(s,u(s;€, ), \)Deu(s; €, A)ds

/ T(t,8)Q(8)DyF(s,u(s;€,N), \)Deu(s; €, A)ds.

— o0

Now we prove that |I|E;(7—6,X) = o(|&; — &2]) as & — &;. Let

I, =09 [v T(t,s)P(s)[F(s,u(s;€1,A),A) — F(s,u(s;€2,A), )

— Dy F(s,u(s;&2,A), A)(u(s; &1, A) — u(s;€2,A))]ds|x }
fort < N<tandI; =0fort > N;

N
I, =09 / T(t,s)P(s)[F(s,u(s;€1,A),A) — F(s,u(s;€2,A),A)
— Dy F(s,u(s; &, A), N (u(s; &1, A) — u(s; €2, A))]ds|x };

I, =5 /N "It $)QUS)F (s, u(s; 1, M), A) — Fs, u(s; €2, 4), A)
- DuF(Sv 'U.(S; 621 ’\)7 ’\)(u(s? 61» )‘) - u(362, ’\))]dS|X}7

N
I, =94y / T(t, $)P(s)[F(s,u(s; €1, ), \) — F(s, u(s; €2, 1), A)
— D F(s,u(s; €2, N), N (u(s; €1, A) — u(s; €2, 1))]ds|x };

where —N is a large number to be chosen later.

It is sufficient to show that for any € > 0 there is a ¢ > 0 such that if |{; — €| < o,
then |I|g-(,_s x) < €. A simple computation implies that

N
I, < 2Lip, FM, / e =Ot=al=9) 1 (5: €1 N) — u(s; €2, N)| xds

t

N
< 2Lip,FM, / e t—alt=)=(v=28)a g (s €1, N) — u(+; €1, M E= (y—26,%)

t

9Lip  F My Mye™

< S5 —a)LletNig — .
_1—K(ﬂ—7+26,7—26—a,p)Lz'qu(7 @) e 6 — Lalx
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Choose —N so large that

2L2quM1 Mge"’r
1 - K(B—~+26v—26 —a,p)Lip,

F(7 —§—a) eV < .

ANy

Hence for such N we have that
1
sup I < 16151 —&lx.
t<r
Fix such N, for I, we have that
N 1
I, <M, / e(Y=8t-alt=s) / | Dy F(s,0u(s;&1,A) + (1 — 0)u(s; €2,), )
T 0

— DuF(s, u(s; €2, A), My dflu(s; §1,A) — u(s; €2, A)| x ds

T N
< My Mye” / (y=6-a)(r=s)
T1-KB-7v+6v-6-a,p)Lip,F J,

1
/ |DuF(s,0u(s; &1, A) 4+ (1 — 0)u(s; €2,A),A) — Dy F(s,u(s;€2,0),\)|ydbds|é; — Elx.
0

The last integral is on the compact interval [N, 7]. By the continuity of u(s; &, \), we have
that there is a o; > 0 such that if |£; — &3] < 0y, then

1
sup I < —¢lé; — &l x.
t<r 4

Therefore if |§; — &2| < 04, then

1
sup I} +sup I < -¢léy — & x.
t<rt t<r 2

Similarly, there exists o5 > 0 such that if [£; — &;| < 09, then

1
sup I3 +sup I < §€|51 - & x.
t<r t<rt

Takingo = min{o1, 02}, we have that if |£; — &;|x < o, then

1 g= (y—s.x) S €l — & x-

Therefore |I|g-(,_s xy = o(l& — &2lx) as & — €. We now prove that Deu(;-, ) is
continuous from X to EZ (y,X). For &1,£; € X let

I= / T(t,s)P(s)[DuF(s,u(s;€1,)), A) — Dy F(s,u(s; €2, A), N)]|Deu(s; €2, A))]ds

r

-+ /_ T(t,s)Q(s)[DuF(s,u(s;€1,A),A) — Dy F(s,u(s;€2,A), N)]Deu(s; &2, A))]ds.
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We claim that |I_|E:(7,X) = o(1) as €; — £2. Using this claim and (3.16), we have that

|D€u('§§1, A) = Df”(’;fZ, )\)lg;(a,,x)

< 1 -

T 1- I"(ﬁ 7Y Q, P)L’Lqu

(Mie?" &1 — 2] x + |- (4.x)) — 0 as, & — e

Hence Dgu(:;-, A) is continuous from X to E; (7,X). The proof of this claim is similar to
the last claim. We omit it. Using the same arguments, we can show that u(-;¢,-) is C?!
from A to EZ(y,X). Now we show that u is C* from X x A to EZ(kv,X) by induction.
By the induction assumption, we know that u is C*~! from X x A to E;((k—1)y,X) and
(k — 1)-derivative is Lipschitz. Let us first look at Dg_lu(t; €, ). It satisfies the following
equation

t
Dt = / T(t, 5)P(s) DuF(s,u, \)DE " uds

(3.18) + / t T(t,s)Q(s)Dy F(s,u,\)D§™ ' uds
+ / T(t, $)P(s)Re1(s, £, \)ds + / T(, 5)Q(s)Res(5,€, \)ds,
where
k=3 /1. _ 9 ‘ .
Res(s,e ) = 3 (*77) DD s 60, DD ulsi. ).
=0

We note that Déu € EZ(iv,X) for i =1,--- ,k — 1. A simple computation implies that
Ri—1(-,&,)0) € LY (X, E7 ((k—1)y,X)) and is C! in €. In order to insure that the above
integrals are well-defined one has to require that a < (k — 1)y < f. This is the direct
reason why we need the gap condition. By the assumption of Theorem 3.3, we have that
K(B — ky,ky — a,p)Lip, F < 1. Using this fact and the same argument which we used
in the case k = 1, we can show that Dg_lu(-;-,A) is C! from X to L*(X, EZ(kvy,X)).
Similarly, we can show that u is C* from X x A to EZ (k7, X). This completes the proof. []

In the following we will present a theorem which will be used to get the stable foliations
for evolution equations in the next section. We assume that the nonlinear F' satisfies the
Hypothesis A and the evolution operator has a pseudo-dichotomy with J = [r,00). In
addition, we assume that there exist constants w, Ms > 0 and Mg > 0 such that

(3.19) IT(t,s)z|x < Mse”'=9|z|x, fort >s
(3.20) IT(t, s)y|x < Mg(t —s)"Pe*""|yly, for t > s.
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Fix A and let v(t,n,A) be the solution of the following integral equation

t
v=T~,7)n+ / T(t,8)F(s,v,A)ds

r

The condition on F implies that v(t,n, ) is C¥ in 5. By using Lemma 7.1.1 (Henry[20]),
we have that

(3‘21) |Df7v(t’77))‘)|L"(X,X) < C(Z’pa Fv MS’Mﬁ)e(iw+(2i_l)u)(t_r)a for: = 17' o ’ka
where C(i, p, F, M5, Ms) is a positive constant,
p= (MsLip,FT(1 — p))T™7,

and I'(s) is the Gamma function.

Consider the following integral equation for ¢t > 7

u(t) =T, 7)Q(T)¢ + / T(t,8)Q(s)[F(s,u(s) 4+ v(s,n,A), ) — F(s,v(s,n,A),\)]ds
(3.22)
+ / T(t,s)P(s)[F(s,u(s)+ v(s,n,A),\) = F(s,v(s,n, ), A)]ds,

o ]

where £ € X and u € Ef(v,X), a <y < .

THEOREM 3.4. . Assume that the evolution operator T(t,s) has a pseudo-dichotomy
on Z and F satisfies Hypothesis A with J = [r,00). If there exist v > 0, a < v < kv < S,
and 0 < r <k — 1 such that

(3.23) K(B = kv,v— a,p)Lip, F < 1,
(3.24) y—(rw+(2r —1)p) >0,
then for each (£,7,)) (3.22) has a unique solution u(-;&,n,\) € Ef(y,X) which has the

following properties

(i) u is C* from X to E}(v,X) with respect to £ and Déu, 1 =1,---  k, are continuous
in all variables.

(ii) u is C" from X to E}(v,X) with respect to n and Df'u, 1 =1,--+,r, are continuous
in all variables.

(iii) Df]u is C*¥~1=% with respect to £, 0 < i < r.
Proof. Let § be the right hand side of (3.22), i.e.,
¢
g(ua £, /\) = T(t’ T)Q(T)€ + / T(t’ S)Q(S)[F(sv U(S) + U(S’ m, )‘)v ’\) - F(S’ U(S, 7, ’\)v )‘)]ds
t
+ [ T POF(s,u(8) + (5,1, 00,0) = Fls, oo, ), s

12



From the definition of the pseudo-dichotomy and the condition on F' we have that G is
well-defined from E}(y,X) x X x X X A to E}(y,X) and is continuous. And for each
£1,€2 € X, we have that

Ig(uvéla B A) - 9(“7 62’ 7, /\)lE;"('y,X) < M367T|€1 - €2|X-

For each u,u € Ef(y,X) we have that

|9(u’ Ev 7, A) - S(ﬁ’ ga 1, A)'Ei’(y,X)

< I{(IB 7Y, p)L’lqu|'U, - alE;"(—y,X)'
(3.23) implies that G is a uniform contraction with respect to the parameters £, and A. By
using the unform contraction mapping theorem, we have that § has a unique fixed point

u(+;&,m,1) € EF(y,X) which is continuous in all variable and is Lipschitz continuous with
respect to . Furthermore, we have that

M367T
1 - K(B—7,7—a,p)Lip,F

In other words, u is the unique solution of the equation (3.22).

|u(a€1al’7?)‘) —U(‘§f2»77»)‘)|12j(~,‘x) < |£1 _€2|X

Now let us look at the smoothness of the solution u. By (3.23), we have that there is
a positive number é such that ky + ké < 8 and

K(p—(ky+kb),y —a,p)Lip, F < 1.

Using the contraction mapping principle, we have that u € Ef (ky+ké, X). First let us look
at the smoothness of u with respect to £. Using the same arguments as we used in Theorem
3.3, we have that u is C* from X to E}(kvy,X) in £&. Next we consider the smoothness of
the solution u of (3.22) with respect to . We claim that u : X — Ef((k—i)y+(k—1)6,X)
is C* in n, for 1 <r < k —1. The idea of the proof of this claim is the same as in Theorem
3.3. Instead of giving the details of the proof we point out the following. First let us
consider the case r = 1. Formally differentiatting u in (3.22) with respect to 1, we have
that

t

Dyu(t;€,m,\) = / T(t, $)Q(s)Du F(s,u + v, \\Dyu(s; €, 7, A)ds

T

:
+/ T(t,s)P(s)DuF(s,u~+ v, \)Dyu(s;€&,n, A)ds

o0

(3.25) + [ Tt 9)QU) (D Fs, (s €1, A) + v, M), )

— D, F(s,v(s,m,A),\))Dyv(s,n,A)ds
+ /t T(t,s)P(s)(DuF(s,u(s;€,m,A) +v(s,m,A),A)
” — Dy F(s,v(s,m,A),A))Dyv(s,n, A)ds.

13



By (3.21), we have
lDﬂv(tv 77”\)|L(X,X) < C(l, p, F, M5,M6)€(w+”)(t"r).

The condition v — (w + p) > 0 implies that the integrals in (3.25) are convergent. On the
other hand, by (3.23) and the uniform contraction principle, the equation

U610 = [ T(t6)QIDAF(s -+ 0,00 (s:€,m, )ds

+ / T(t,s)P(s)D F(s,u+v,\)U(s;€,n,)\)ds

oo

+ [ T )QUNDLF(s,ulsi 1,3) + (.70, )
— Dy F(s,v(s,n,A), A))Dyv(s,n, N)ds

¢
+ / T(t,s)P(s)(DyF(s,u(s;€,m, )+ v(s,m,A), )
— D,F(s,v(s,n,A),A))Dyv(s,n,A)ds.
has a unique solution U € L(X,Ef((k — 1)y + (k — 1)8, X)) which is the derivative of u.

Now we consider Dyu, r > 1. Formally differentiatting u r-time in (3.22) with respect to
n, we have that

t

Dyu(t; €,m,A) =/ T(t,5)Q(s)DuF(s,u+ v, \)Dyu(s; §,n, A)ds

T

t
+ / T(t,s)P(s)DyF(s,u+v,\)Dyu(s;€,n,N)ds

(3.26) + [ (@5, En Vs + [ T(t,5)P()R(s,6m, Vs,
where
r—2
Rrs&n ) = (7 1) Dy DLl €00) + (s, 0 N0 (s 6,0)
i=0

Dy (DuF(s,u(s; €, A) + v(s,7, A), A) = DuF(s,0(s,m,X), X)) Dyo(s,7, \)].
Since Df’u € L'(X,Ef(k—i)y+(k—i)é6,X))fori=1,--- ,r — 1, and
'D:]'U(t, m, ’\)lL'.(X,X) S C(Zapa F’ ]\/[57Mﬁ)e(iw+(2i_l)“)(t_r)a for: = 1, e 7k7

a simple computation implies that R,(.,&,n,\) € L™(X,E}f((k—r)y + (k—r)é,X)). This
implies that the integrals in (3.26) are convergent provided r < k — 1. On the other hand,

14



by (2.23), (2.24) and the contraction mapping Theorem, we have that the equation

U(t;€,n,2) = / T(t,8)Q(s)DyF(s,u+ v, \)U(s;€,1m,A)ds

¢
+/ T(t,s)P(s)DyF(s,u+v,AU(s;€,m,A)ds

oo

n / T(t, $)Q(s) R (s, €1, )ds + / T(t, 3)P(s)Ro(s, €, 1, \)ds

o0

has a unique solution U € L"(X,E}((k — r)y + (k — r)é,X)) which is the derivative of
D;"lu. Similarly we can show (iii). This completes the proof. []

§4 Applications.

In this section, we will discuss some direct consequences of Theorem 3.3 and Theorem
3,4. Many differential equations in infinite dimensional spaces such as parabolic equations,
hyperbolic equations and delay equations are equivalent to certain forms of integral equa-
tions by using the variation of constants formula. This observation leads to the following.

Let Z and A be Banach spaces. Consider the following semilinear evolutionary equation

(4.1) % + Au = F(u, \),

where u € Z, the parameter A € A. We assume that the linear operator A satisfies

HyYPOTHESIS B. The operator A is a sectorial operator and the spectrum o(A) of A
has the following decomposition

(4.2) o(A) = 01(A)Uo,(A)
(4.3) —w< inf Rev< sup Rev<a<f< inf Rev,
VEUI(A) J/EUl(A) V€U2(A)

where w,a and 3, B > 0 are constants and o1(A) is bounded.

It is known that there is a positive number a such that the fractional powers of (A+al)
are well defined, which we denote by (A4 + al)?, for all § € R. See Henry [20] for example.
The domain of (A +aI)?, which we denote by Z?, is a Banach space under the graph norm
|.|¢. Furthermore —A is the infinitesimal generator of an analytic semigroup, which we

denote by e~4?.

The nonlinear term F' is assumed to satisfy
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HyprOTHESIS C. There exist nonnegative constants §; <1 andf; <1,0<6,-6, <1,
such that F is a continuous mapping from Z°% to Z%.

We note that many differential equations such as reaction-diffusion equations, Cahn-
Hilliard equations, Kuramoto-Sivashinsky equations and Navier-Stokes equations can be
written in the form of (4.1).

By using Lemma 1.4.3 in [20] we have the following lemma

LEMMA 4.1. There are positive constants M;, 1 = 1,--- ,6 and projection P corre-
sponding to o1(A) such that

(4.4) |€_AtP|L(zh,zh) < Mje @, fort <0,
4.5 e P\ 00 702y < Mae™, fort <0,
L(Z°%1,Z°%2)
(4.6) IC_At(I — P)lL(ZBI ,291) S M36—ﬂt, fort 2 0,
4.7 e AT - P 0y 705y < Myt?2=%e=Pt fort > 0,
L(Zz°%,2°%2)
(48) le—At|L(Z"1,Z"1) < .Mg,e“’t, fort > 0,
(4.9) le™ 4| L (201 202y < Mst? %!, fort > 0.

As an application of Theorem 3.3, we give the following invariant manifold theorem
which generalizes the usual center unstable manifold theorem (see, for example, [7])

THEOREM 4.2. . Assume that the Hypothesis B and C are satisfied, F € C*(Zy,, Zs,)
for some integer k > 1 and there is a v > 0 such that

(4.10) a<y<ky<pB
(4.11) K(B—ky,y—a,8; —8;)Lip, F < 1,

where K is given in Lemma 3.1. Then there exists a unique C* ~-unstable manifold W3
for (4.1),

(4.12) W3 = {uo|u(t,uo) existsfor t < 0,u € Ed‘('y,Zel)},
which is the graph of a C* mapping h: PZ% x A — (I — P)Z%.

REMARK. The gap condition (4.10) always holds if @ < 0, here the y-unstable manifold
becomes unstable manifold or center-unstable manifold. If the condition (4.10) fails, then
the examples given in [9] show that the invariant manifolds lose smoothness even if the
nonlinearities are analytic.

Proof. From the definition of y-unstable manifold we have
W: = {uo|u(t,ug)existsfor t <0,u € EO_(,.),’ZOI)}’
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where u(t,uo) is a solution of (4.1) with the initial data u(0,uq) = uo. It is clear that WY
is invariant under the flows of (4.1). We want to show that W is given by the graph of a
C* function over PZ% . First we claim

Claim. u® € W <= u(-) € E5 (7, 2%) with u(0) = u° and satisfies

¢
u=e AP 4 / e APU=9 PPy, \)ds
(4.13) °

t
+ / e~ ARU=90Q F(u, A)ds,

— 00

where Q = I — P and ¢ = Puy.

This claim can be easily verified by using the variation of constants formula.

Let X = Z%,Y = Z% T(t,s) = e A=) 1 = 0 and P(t) = P. Then the integral
equation (4.13) has the same form as (3.12). It is easy to see that the conditions of
Theorem 4.2 are the same as those in Theorem 3.3 in this case. By using Theorem 3.3, we
have that for every (£,)) € PZ% x A the integral equation (4.13) has a unique solution
u(.;€,)) € E; (v, Z%) which has the following property:

u:X xA— Ej(ky,X)
is a C* mapping. Let
h(€,A) = Qu(0;¢,A)
0
=/ e~ ARU=9) O F(u(s; £, \), \)ds.

Then h: PZ% x A — (I — P)Z% is a C* mapping and satisfies that

@14)  R(EnA) — h(Ep Nl ge, < YDEB =77 = b1 = 0s)LipuF

ST R(F vy —a b~ Lip, P~ C2lzn

Finally, we have that
Wi = {6+ (NI € P2},

This completes the proof. [

As an application of Theorem 3.4, we will prove a theorem on invariant foliations of
space Z% in such a way that the leaves of the foliation are transverse to the invariant
manifold W} from Theorem 4.2. If F'(0,)) = 0, then the unique leaf that passes through
0 is the stable manifold of (4.1). We will also see that this invariant foliation gives us
exponentially attractivity. Hence, if WY is finite dimensional, then this implies the inertial
manifold theorem given in [16].
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Let u(t,ug), t > 0, be the solution of (4.1) with the initial data uy. By using Lemma
7.1.1 in [20], we have that

(4.15) IDiv(t,m)lLi(x,x) < C(G, p, Fy My, Mg)el =Dt - fori = 1,... |k,
where C(1, p, F, M5, Ms) is a positive constant,
p=(Ms Lip,FT(1 - p)) =7,

and I'(s) is the Gamma function.

THEOREM 4.3. . Assume that all conditions in Theorem 4.2 are satisfied. In addition,
we assume that there exist v, maz{0,a} <y < f, and r,0 <r < k — 1 such that

(4.16) (maz{M,, M} + 1) K(B — v,y — a,6; — 03)Lip, F < 1,
(4.17) y—(rw+(2r —1)p) > 0.

Then there exists an unique invariant foliation of Z% whose leaves are vy-stable. Moreover,
each leaf is given by

W3 (€ +R(E,N) = {C+h(EN) + 6(6,¢,NIC € Q27

where ¢ € PZ% (regarded as an index set), W2 (£ + h(€, M) is the leaf that passes through
£+ Rh(€,)) and ¢ : PZ% x QZ% x A — PZ% satisfies the following

(i) #(&,-,0): QZ% — PZ% is C* and quﬁ is continuous.
(ii) ¢(-,¢,N): PZ% — PZ% is C" and D¢ ¢ is continuous.
(iii) Déqﬁ is C*¥=*~1 differentiable in ¢ fori < r.
iv) W2(€ + h(€,A)) intersects WY transversely at a unique point.
v v

REMARK. We note that the condition (4.17) holds for r = k — 1 if the positive real
parts of eigenvalues and the Lipschitz constant of the nonlinearity are small enough.

Proof. For any n € Z% let u(t,n) be the solution of (4.1) with the initial data u(0,7) =
n. We are looking for all solutions u(¢,7) of (4.1) which are asymptotically equivalent to
u(t,n) in the sense that u(.,7) — u(.,n) € Ef (7,X). In other wards, we are looking for

Wi (n) = {71 € Z°|u(.,71) - u(.,n) € Ef (v,X)}.

Set w(t) = u(t,7) — u(t,n). Then w satisfies the following equation

(4.18) % + Aw = F(w +u(t,n),\) — F(u(t,n), A).
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Using the same arguments as in Theorem 4.4, we have that w(t,wg),t > 0, is a solution
of (4.18), which belongs to Ef (v, 2%), if and only if w(-) € Z% with w(0) = wy =7 —
and satisfies the following integral equation

w=e 49+ /0 e AIQ[F(w + u(s,m), X) = Flu(s,n), A)]ds

t

(4.19) + / e APU=I) P[F(w + u(s,n),\) — F(u(s,n),\)]ds,
oo

where ¢ = Quw(0).

Let X = Z%,Y = 2%, T(t,s) = e 40t~ 7 = 0 and P(t) = P. Then the integral
equation (4.19) has the same form as (3.22). By Theorem 3.4, we have that for every
(¢,m,A) € QZ% x Z% x A the integral equation (4.19) has a unique solution w(+;¢,n, ) €
E{f (7, Z°%) which has the following properties:

(i) w is C* from QZ% to E}(y,Z%) with respect to ¢ and Déw, t = 1,---,k, are
continuous in all variables.

(i) wis C™ from Z% to E;t (v, Z% ) with respect to n and D,f7 w, 1 =1,---,r, are continuous
in all variables.

(ii1) Df’w is C*~i=1 in ¢ for ¢« < r. Moreover,let

(4.20) P(C,m A) = P(w(0;¢,n, A) + u(0,7)).

Then (¢, n, \) satisfies

(421) [9(Gom A) = PG Vo, < 2B =07 = @00 = B)Lipu

“1-K(B-7v,7vy—a,b, —91)Liqu|<1 — Cals, -

Since 7 = w(0;¢, n, A) +u(0,n) = P(w(0; ¢,n,A)+u(0,1))+ Q(w(0; {,n, ) +u(0,n)) =
¥(¢,m, A), we have that

Wi (n) = (il = »(¢,m, M) + ¢+ Qn, ¢ € Q2% }.

Furthermore, u(t, W3(n)) C W5 (u(t,n)) for t > 0. This implies that W3(n) gives an
invariant foliation of Z%. We claim that W3(n) transverselly intersects W.* at a unique
point £ + h(€, \) for some € € PZ% . First if 7 € W2 (1) N'W3, then there exist o and
o such that

7=v((o,n,A) + o +Qn =& + h(&o, A).

This implies that £ is a solution of § = ¥ (h(&,A) — @Qn,n,A). On the other hand,
Let g(£,m,)) = (h(E,))—Q@n,n, A). By (4.14) and (4.21), the condition (4.16) implies
that

Lipe g < 1.
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Namely, g is a contraction in €. By the contraction mapping theorem, we have that £ =
Y(h(&,A)—Qn,n, A) has a unique fixed point §,. This implies that WZ(n) transverselly
intersects W% at &o + h(€o,A). It is easy to see that Wi(n) = Wi(& + h(&o,A)). Tt
suffices to consider leaves passing through n = £ + (€, A), indexed by ¢ € PZ%. Let

$(&, ¢ A) = 9((, €+ h(€, A), ).

We have, since Qn = h({, A), that

W5 (€ + h(€,0) = {(£,(,X) + ( + R(E M) € QZ™).

This completes the proof. []

If the condition v — (rw 4 (2r — 1)) > 0 is not valid for any r > 1, then we can still
get more smoothness of ¢(€,(, A) with respect to €. In fact, we will see that ¢(&,(,A) is
Holder continuous in € with a small Holder exponent.

THEOREM 4.4. Assume that all conditions in Theorem 4.2 are satisfied. In addition,
we assume that

(4.22) (maz{My1, M3} + 1)K(B —~,y—«,6; —02)Lip, F < 1.

Then the mapping ¢ : PZ% x QZ% x A — PZ% satisfies the following
(i) ¢(&,.,0): Q2% — PZ% is C* and Déqﬂ is continuous.
(ii) ¢(.,(,A) : PZ% — PZ% is C¢ (Hélder continuous), where € > 0 is a small number.

Proof. It suffices to show that the solution w(.;{,n,A) of (4.19) is e-Holder continuous
from Z% to E(;"('y,Zal) in . Since K(f8 — v,y — a,6; — 6,)Lip, F < 1, thereisa é§ > 0
such that ¥ + § < 3 and

KB—v-6y+6—a,6; —6;)Lip, F <1

Using the contraction mapping theorem, we have that w(.;(,n,)) € Ef (y + 6,2°%). For
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each 19, € Z% we have that

e (w(t; ¢, m1, A) = w(t; ¢, 105 Ao,

= et [ DGRl ¢, N) + s 1) ) = Flus ). )
— P53, 70, M) + (s, 70), A) + Flus,m0), s

' /w e~ AP PP (w(s; ¢, 1, A) + u(s, 1), A) — F(u(s,m), )

- F(w(s; Ca Mo ’\) + “(5»770), >‘) + F(u(sa "70)’ ’\)ds}|01

t
< M4L2qu/O (t - 3)02_01 67t—ﬁ(t_3)_78|w('; C’ 771,’\) - w(a Cﬂ?o, A)'E:’(%Z"l)ds
oo
+ M2Liqu/t e o= )=78 1y ¢, A) — w(+5 €, 7o, ’\)|E(‘)"(-y+6,Z"1)d3
t
+ 2M4Liqu/ (t = 5)P =P =PUmI=OFD (5 o, N, gou [ m) = u(s,m0)lG, ds
0 k)

[ o]
+ 2M2L,jpup/ eVtat=)=(y+8)s (L ¢ po A ]E}e(%z,,l)h/,(s, m) — u(s,n0)|g, ds.

t

Taking € > 0 such that e(y +w + p) < (1 —¢)é and using (4.16), we have that

(w25 ¢, 115 A) = w5650, Al gt (4,201

C(l,p, F,Ms, Mg)K(B — v,y — a,6y — 62)Lip, F -
< K € _ € .
- 1-K(B—7v,7—a,0, —62)Lip, F w(:5¢,m0, ) EJ’(%Z“)MI ola,

This completes this proof. []

REMARK. One can apply Theorem 3.3 and Theorem 3.4 to get invariant manifolds
and invariant foliations around periodic orbits, homoclinic orbits and heterclinic orbits for
evolutionary equations.
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