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Introduction.

The familiar system of reaction-diffusion equations

DT
poCp gy = AT + qopoKe™ 477
(0.1) D;
55 = (Le)'AZ —Ke #/TZ

describes combustion processes at low Mach numbers provided that the heat release is
sufficiently weak ([1]); with weak heat release, the hydrodynamic flow field decouples from
the equations in (0.1) to leading order. In (0.1) and elsewhere in this paper, T is the
temperature, Z is the mass fraction of reactant, p is the density, qo is the heat release, K
is the reactive rate, A is the activation energy, (Le)™! is the Lewis number, and % = % +
S vz, t)aiz; denotes the convective derivative along the fluid velocity, v = (v, vq, v3).
Thus, under the assumptions of weak heat release at low Mach numbers, the hydrodynamic
velocity field v is a prescribed incompressible velocity and all the effects of combustion
involve the reaction-diffusion equations in (0.1). Despite all of the intuition that can be
gained from studying (0.1), the heat release is typically not small in practice since for
example a typical temperature rise from 300° K to 1500° K during combustion has a
non-dimensional heat release of 5.

In this paper, we present a limiting system of equations which describe combustion
processes with strong heat release at low Mach numbers in either confined or unbounded
regions ([2], [3]). This limiting system of equations allows for large heat release, substantial
temperature and density variation, and substantial interaction with the hydrodynamic
flow field including the effects of turbulence. Nevertheless, since the detailed effects of the
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nonlinear acoustic waves have been removed, this zero Mach number limiting system is
significantly simpler than the complete system of equations of compressible combustion.
In this paper, we also explicitly compute and analyze a number of exact solutions of
these equations in simple geometries. These solutions illustrate the effects of confinement,
curvature, external piston motion, and vorticity production on both the combustion process
and the hydrodynamic flow field (see sections 3 and 4 below). In the limit of infinitely
thin flame sheets described in section 2, these equations already have a prominent role in
the numerical simulation of turbulent combustion in open and closed vessels (4], [2], [5],
[6]). One of the goals of this paper is to stimulate the interest of workers in theoretical
combustion and nonlinear P.D.E.’s in a new class of problems involving reaction-diffusion
equations coupled with fluid dynamics.

For simple one-step Arrhenius chemistry in a bounded region, €2, the system of equa-
tions for low Mach number combustion with large heat release is given by the following:

(0.2) (a) Mean Pressure Equation

% fQ ’yqupZe_A/T

vol(§)
(b) Reaction-Diffusion Equations

DT y—-1dP g —AJT
=L L DKpZe A AT
Dt 0% dt+€ pace e

d
—=P(t) =

DZ K
— = ——nge—A/T + (Le) e div (pv2)
(c) Nonhomogeneous Incompressible Fluid Equations
D
p-l—)-i—) = —Vp+ePrAv
: -1 P v . —A/T
div v = (yP(t)) oy + quﬁ pZe + ve AT

(d) Boundary Conditions

oT o7
vlaq = 0,%|an = %bn =0,p = P(t)/T(z,t).

Thus, the equations in (0.2) involve the six unknowns, P(t),T(z,t), Z(z,t), v where P(t)
is the mean pressure; the quantity, p(z,t), is the deviation from the mean pressure and is a
Lagrange multiplier for (0.2) (¢c) — this function is determined afterwards once v is known
as for the ordinary incompressible Navier-Stokes equations. The quantity Pg is the Prandtl
number, v is the ideal gas constant, and € is a parameter (see section 2) which measures
the ratio of the flame front thickness to the dimensions of 2 — typically, we have ¢ < 1 in
practice. From (0.2) (c¢) the reaction-diffusion terms act as sources of specific volume for
the fluid dynamics and also generate an increased mean pressure due to confinement from
(0.2) (a); on the other hand, the pressure changes and the fluid velocities, v, influence the
structure of the reaction-diffusion equations in (0.2) (b). Thus, the hydrodynamics and the
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chemistry are both strongly coupled in (0.2); however, the effects of nonlinear acoustics
are completely absent in (0.2) — the only sources of divergence in the fluid are due to
combustion, the effects of expansion or compression of the gas due to nonlinear acoustics
are ignored. Next, we summarize the contents of this paper.

In section 1 we present a systematic derivation of the equations of zero Mach number
combustion for a general reacting mixture and obtain the system in (0.2) as an extremely
special case (this derivation follows our earlier treatment for simplified chemistry from [2]).
In section 2, we assume that the parameter ¢ measuring the ratio of flame thickness to the
diameter of  is vanishingly small and extract a formal limiting system from (0.2) as € | 0.
This limiting system (see (2.17) below) defines a new class of free boundary problems where
the flame front is a free boundary strongly interacting with the hydrodynamic flow field.
We also discuss some of the empirical and quantitative laws for the propagation of these
flame fronts that have been used in practice. In section 3, we study the equations in (0.2)
in a single space dimension. After introducing Lagrangian mass coordinates, we observe
that the equations in (0.2) (c) decouple from (0.2) (a) and (0.2) (b) in this coordinate
system so that in fact suitable modifications of the reaction-diffusion system in (0.1) do
describe combustion with large heat release in a single space dimension. We also discuss
the effects of one-dimensional piston motion in a confined chamber and explicitly solve the
one-dimensional flame sheet model that emerges in the limit as the flame front thickness
parameter, €, tends to zero. In section 4, we present some new exact solutions of the free
boundary problem for zero Mach number combustion with infinitely thin flame structure
presented in section 2 (see (2.17)). These solutions illustrate the effects of curvature of the
flame front, confinement of the gas, and production of vorticity in swirling flames on both
the combustion process and hydrodynamic flow field. Finally, in section 5 we make a brief
list of accessible open problems in the mathematical theory of the equations for zero Mach
number combustion with strong heat release. We mention here that in a series of interesting
papers, Embid ([7], [8], [9]) has established the well-posedness and short-time existence of
solutions for the equations in (0.2) as well as for related equations. Furthermore, in the case
without diffusion, Schochet ([10]) has developed a completely rigorous derivation of the
equations in (0.2) as a zero Mach number limit from the equations of compressible inviscid
combustion. Thus, there is even a rigorous proof which supports the formal derivation
given in section 1.

§1: The equations for zero Mach number combustion for a General Reacting
Mixture.

1.1 Preliminaries. Here we will present the derivation of the low Mach number
combustion equations for a reacting mixture of ideal gases in a bounded domain. Our
point of departure is the general equations describing the flow of a reacting mixture of
compressible fluids as are given, for example, in Williams [11]. These equations express
the following principles of conservation:



(1.1) (a) Conservation of mass

Dy

De +pdiveo=0
(b) Conservation of momentum
Dv

=Y — T9( &
P Dy + Vp=nlAv+ 3V( div v)

(c) Conservation of energy

Dh _ Dp n <= [8v; v; 25 .
P5r = Di 2 2 [8:::]- + %2 3 ij( div v)
M
+ div (kVT) + div (Z h,-j,-)
1=1
(d) Conservation of the i-th chemical species (: = 1,..., M)
DY; o
Di = div 3; + @:(p, T,Y).

Next, we discuss the meaning of, and the assumptions made on, the different terms
appearing in these equations. The variable ¢t denotes time and z denotes space (usually
zeR?), while v = (vy,vq,v3) is the average fluid flow velocity of the mixture and —[% = aﬁ, +
v.V. The quantity p is the density of the mixture, p is the pressure, T is the temperature,
h is the specific enthalpy of the mixture, h; is the specific enthalpy of the i-th chemical
species and Y = (Y1,...,Yy). It is assumed on physical grounds that p,p, T and Y;
are non-negative quantities. Moreover, since Y; is defined by Y; = p;/p where p; is the
mass density of the i:-th chemical, it follows that the quantities Y; satisfy the constraint
Zij\il Y; = 1. In practice, one usually uses this fact to eliminate one of the equations in

(1.1) ().

We restrict ourselves to consider a mixture of ideal gases, i.e. satisfying:

(1.2) (a) Equation of state

= RpT —
b= By (zW

(b) Caloric equation

M
h = Z h;Y; where
=1

h; = c;;(T —T°)+ h{

Here R is the universal gas constant, W; is the molecular weight of the :-th chemical
species, h{ is the heat of formation of the i-th species at the reference temperature T°°
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and c; is the heat capacity at constant pressure for the i-th chemical species and it has
been assumed constant for simplicity. We remark for reference that for an ideal gas with
¢, and cl, its heat capacity at constant pressure gnd Volpme respectively, and ~; = c]’,/ c,
its corresponding y-gas constant, one can write ¢! and ¢! in terms of v; as:

14
i R
(1.3)
(a) ¢t = ﬂ#
v Wi '71_‘1

M
@) =) g¥
=1
M
(1.4) (b)  cu=) Y
i=1
Moo Mo -1
(c Y =cp/cy, = —Y; —Y;
) v/ ; 7i—1 ; 7i—1
In general + is not constant, however if v4; = 7, for 7 = 1,..., M then one can check that

Y = Y. With ¢, ¢, and v given by (1.4) and (1.3), one can rewrite (1.2) (a) as
vy—-1
v

(1.5) p= pepT.

We recall the assumptions made on the transport mechanisms. the mixture has been
considered as an isotropic elastic medium, 7 is the coefficient of shear viscosity. The coef-
ficient of Bulk viscosity has been assumed to be zero. The conduction of heat is governed
by Fourier’s law and & is the coefficient of thermal conductivity. We also explain the
assumptions to be made on the species diffusion mechanism. The term j;(i = 1,..., M)
represents the diffusion flux of the i-th chemical species and together they satisfy the
constraint Egl Ji = 0. As constitutive hypothesis for the j;’s we adopt Onsager’s gener-
alization of Fick’s law:

M
(1.6) ji=» DIVY;, i=1,...,M.
j=1
The diffusion coefficients D i,j = 1,... M cannot be prescribed in an arbitrary manner.

Using the requirement Zf\il Ji = 0, it follows from (1.6) that:

M M
(1.7) 0=>)" (Z 1)"1') vY;,

=1
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Furthermore, since the mass fractions must satisfy Zz]\il Y; =1, we obtain from (1.7):

M-1[ M -
(1.8) 0= Y (D - DM)| vy;
j=1 Li=1

Therefore we require that the diffusion coefficients D% satisfy:
M .. M .

(1.9) YD =3"DM forj=1,..,M-1.
=1 =1

There are at least two special circumstances in which the complex expressions for j;
given in (1.6) admits simplification. For example, if we consider a reactive binary mixture,
then (1.6) reduces to the well-known Fick’s law j; = pDVY; and j; = pDVY,. The second
important case is given by the dilute mixture approximation, in which one of the chemical
species is present in very high quantities relative to all the other species. For instance,
this situation arises in many combustion processes taking place in air, in which nitrogen
plays the role of an inert gas. Since 78% of the air’s composition consists of nitrogen, these
combustion processes satisfy the assumption of the dilute mixture theory.

If we assume that the first M — 1 species are present in scarce quantities relative to
the last one, then in the dilute mixture approximation these M — 1 species diffuse as in
the binary mixture situation:

(1.10) (a) ji=pD'VY;, i=1,...,M—1,

with difference that in this case the diffusion coefficients D! don’t need to be the same.

For jpr we have:
M-1

(b) ju =Y p(DM —D)VY; + pDM Yy
j=1

One can easily check that for the j;’s given in (1.10) Ef\il Ji = 0. We also remark that

for binary mixtures the dilute mixture approximation (1.10) reduces to Fick’s law. Notice
that jps is still given by a complex expression, but provided that Zl]\il Y, = 1, we can
compute Yys directly from Y7,...,Ya -1 without resorting to equation (1.1) (d) for Y.
Actually, if we add up the equations for Yi,..., Yy and use the fact to be discussed below,
that Zf‘il ®; = 0, we obtain

DY

M
o7 = div (DMVY), where Y =) Vi

=1

(1.11) p

Since initially we assume that Egl Y; = 1, by uniqueness of the solution of (1.11) we see

that Z?i1yi = 1 at all times. In consequence, we can ignore the equation for Yjs and

6



set Yyr =1 — Zf‘i;l Y;. From now on, we will work within the framework of the dilute
mixture theory.

Next, we discuss the assumptions made on the reaction mechanism. The source terms
®,; represent the rate of production of the 2-th chemical species per unit volume and are
given from the reaction mechanism for the mixture as follows:

We assume that the chemical changes taking place in the mixture are governed by ¢
chemical reactions given on a molar basis by:

=~

M
f .
(1.12) Véj M; Tb_’ Z V:; M; j=1,...,¢
where M;(z = 1,...,M) is the chemical symbol for the i-th species and vj;,v5(¢ =
1,...,Mand j =1,...,¢) are the stochiometric coeflicients for the ¢-th species as a reac-

tant and as a product in the j-th reaction respectively. Since mass must be preserved for
each one of the reactions in (1.12) the stochiometric coefficients must satisfy:

M
(1.13) > (v = vij)Wi=0forj=1,...,¢

ij
1=1
The source term ®; is given from (1.12) by

L
(1.14) @ =W; ) (vi; — vi)R;,

where R; is the reaction rate for the j-th reaction. From (1.13) follows immediately that
the source terms ®; satisfy

(1.15) > @i =0.

We consider reaction rates R; given by the law of mass action

Y: vij Y: vij
_ fM i b M ) .
(116) R] = ijizl (pWI> - k‘jHizl (pW1> ] = 1,. . ,E.

The reaction rate constants k]j-r and k;’- are given semi-empirically by Arrhenius’ law for
dilute mixtures

ot
ki = BIT® exp(—E!/RT)

(1.17) b
k% = B'T® exp(—E}/RT), j=1,...,L
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Here E]f ,E]b~ represent the activation energy for the forward and backward j-th reaction

respectively; BJ)-c and B;’ are the corresponding frequency factors; af ,a;’- are constants

usually fitted by experiment whose value usually ranges between 0 and 1.

For the derivation of the zero Mach number combustion equations it is convenient to
rewrite the equations for conservation of mass and energy as equations for the pressure
and the temperature rather than equations for the density and the enthalpy. This can be
done by differentiating (1.2) and using (1.1) (a), (¢) and (d). The resulting equation for
the pressure is:

Dp n 2 [ov; 2 2
Di + ypdiv v = (y 1)2 ”2;1 [895,- 351]( iv v)}
M-1 . ‘
+(y = Ddiv (s9T) + (= 1) Y plch — ¢} )D'VT.VY;

(1.18) =1

M-1 1 1 _
+ 5 Z RT <ﬁ7 - W) div (pD'VY;)

Py 9T (5 = ) = (= Dk = )|

and for the temperature

M
DT . Dp 1 Ov; Ov; 2 .
P oy = div (kVT) + T + > iJZ::l [—— + ——l — =b;i(div v)
(1.19) Mo | Mot
+ ) (ch— e )D'VT.VY; — Y (hi — hm)®;.

=1 =1

Next we write the system (1.1) (b), (d), (1.18), (1.19) in the following non-dimensional
form, where the superscript A is used to emphasize the dependence of the solutions of
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(1.20) on the parameter A to be defined below:

(1.20)

(a) Non-dimensional equation for the pressure
2

Dp* y—1 <[00} 2
Di —— 4 yprdiv v? Z [—]z — 5‘6,']'(le v,\)

2)\2R6 L oz T
1,]=1
y—-1 T -1 r p M A oyA
- — vT*vY.
PrReT—1° PrRel" 17 (6 — & MV VYt

M-1 A
Tt 1 1 v (A TYVA
— — — vY;
+ Z PrReLe (W,. WM) div (p"VI7)+

+z[ MF -7 ) - 1= - )| &

(b) Non-dlmenslonal equation for the velocity field

1
A2vph A 4 = v(div v*
pr— Dt + Pt = [Av +3 (div v?)
(c) Non-dimensional equation for the temperature
3 A 2
DT> 1 I'-1 v  Ov 2
AN 4 2 26 (div o
7 %Dr TR T 4 !axj * e, ~ 3ouldv YY)
P 1 Dp* A “M\oA oA
Pr R T Dt Z PrReLe” (G =& VIIY,

M-
- Z(h? — h)®;.
1=1

(d) Non-dimensional equation for the i:-th chemical species

DY 1
A ) A A .
Y, - =1,... -1
Y P?R@L’dlv(pv Y+ @, i=1,...,M -1,
where Di = e + ..

In the above equations we used the following;:

(1.21)  Non-dimensionalization

(1) The distance is given in units of a typical length L, e.g. L = diam .

(2) The velocity v* is given in units of a typical velocity |v,| for the problems; |vy,] is
often chosen as the free space burning velocity.

(3) The unit of time is determined from (1) and (2) by 7 = L/|vm]|.

(4) The pressure p* is given in units of the essentially constant initial pressure py.
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(5) The temperature T is given in units of a typical temperature T, for the problem:;
Ty, 1s often chosen as the burnt gas temperature.

(6) The mass fractions Y; are already non-dimensional i.e. Y* = Y;.
(7) E;, = E'Ii, /¢yt is the non-dimensional heat capacity for the i-th chemical species.

W, =W, /Wy, is the non-dimensional molecular weight for the i-th chemical species.

Here c,' and Wy, are typical values of the heat capacity and the molecular weight for the
mixture.

(8) The unit of density p,, is given by p,, = WL;Pme-

9) Re = £mllem| {5 the Reynolds number. Pr = 22~ is the Prandtl number. Let =
n Y I3
?cn_m:D" is the Lewis number for the ¢-th chemical species.
m=p

(10) A = Ml\/l‘ where M = —\I/l—r—% is the Mach number and T' > 1 is given by =L =

—B_
Wmep *

The above non-dimensionalization, together with the equation of state (1.2) (a), implies
the relation

NEPWYECS 7
(1.22) pr =p*T (; W)
Also from (1.2) (b) one gets
h;
(1.23) CT T,
h; = (—cpT° + ki) ey Tm,

=& T’\ + h° where

and from (1.4)

M-1

(1.24) =) G-y

=1

From (1.14), (1.16) and (1.17) one sees that ®? is given by

¢
Z R)i=1,...,M

(1.25) 3 =

1

Pmlvml

where R? is given by

' 01! Y/\ V;cj
R} =D, {(ﬁ)'%'(T*) exp(-af/mimit, (7)) -
(1.26)

k

N Y’\ ’
THPMMI(TN exp(— AL /T (W) }

10



Here |vj| = Zf\i] vij, Vil = Ez]\il Vijs Af = E{/RTm and A? = E;’/RTm are the

non-dimensional activation energies for the forward and backward j-th reaction respec-

s
tively. D; = # if Damkdhler’s first similarity group (j = 1,...,¥). '(;1 = —:Jg is the
m|ty J

non-dimensional equilibrium constant for the j-th reaction and T]f , TJ'? represent the char-

acteristic time for the occurrence of the forward and backward j-th reaction respectively
and are given by

vi|—1
(Tf)_l = BfTa’{ (P_m>| g and
J j-m W, ’

vi'|—1
(1) = BTy (—”"‘ )I a j=1,...,0
] ] m Wm 9 gy ey .

1.2 Formal Derivation of the equations for zero Mach number combus-
tion. For the derivation of the equations for zero Mach number combustion we will re-
strict our attention to a bounded domain. The corresponding formulation and derivation
for unbounded regions is even simpler and the reader is referred to [4] — the pressure
remains constant for unbounded regions. For the case of a viscous reacting gas mixture we
supplement equation (1.20) (b) for the velocity field with the no-slip boundary condition

(127) "l))“ag = 0.
Also, for simplicity, we impose on T* and Y;* the boundary conditions

oT* oy
2 s =0, — |50 =0,s=1...., M —1
(1.28) o lag = 0, n lsq =0,2=1,...,

guaranteeing the thermal insulation and impermeability of the boundary.

In the derivation given below, use will be made of the following known facts (Temam

[12]):

Fact # 1 Every vector field v in L?(Q2) admits a unique orthogonal decomposition in
terms of a solenoidal vector field w and a potential V¢:

v =w+ V¢ with
(1.29) div w = O,U).n|ag =0 and
A¢ = le v, %Iag = v.n|39
on

We denote by P the orthogonal projection of L%(Q) onto the divergence zero (or
solenoidal) vector fields and remark that Pv = 0 if and only if v = V¢ for some ¢ .

11



Fact # 2 The boundary value problem

Ap=finQ

1.30
( ) % s = ¢ has a solution with V¢

uniquely determined if and only if fQ fdz = fan gds.

The derivation of the equations describing low Mach number combustion rests on the
following three assumptions:

(1.31)
(a) The non-dimensional Mach number is small, or equivalently, the parameter A de-
fined in (1.15) (10) is large.
(b) The initial pressure P, is spatially uniform within terms of order A~2.

(¢) The initial temperature, mass fractions and velocity are in chemical-fluid bal-
ance within terms of order A~!. this last assumption will be explained in detail
later.

With these assumptions in mind we begin with the Ansatz
P =p® + A7 Ip + A 2py +0(ATP)
v} = 0™ 4+ 027

T> =T +0(\71)
YA=Y®+02Y) i=1,...,M—1.

(1.32)

We substitute this expansion into the velocity equation (1.20) (b) and equating the

powers of order A2 and A we obtain, respectively
vp® =
(1.33)
Vp = 0.

For the power of order zero in A we first apply the projection operator p and obtain

Dy 1
(1.34) P <p°° LA —Vw°°) =0

Dt Re

where v® = w™ + V¢*> (we used the fact that P(AV¢>®) = P(VA$*>) = 0 to simplify
further equation (1.34)), % = g—t +v*°.v, and p™ is given in analogy with (1.22) by

M-1 1 1
1.35 = p>T™ — - =— | Y¥>].
(1.35) p==p [;(Wi WM) }
From (1.33), (1.34) and fact #1 we conclude that
(1.36)

(a) p> = p™(t)
(b) There exists a scalar pressure 7 so that p®LL= 4+ v = 2-Aw™.
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Substituting the expansion in the equations for the temperature and mass fractions
(1.20) (c), (d) and collecting terms of order zero in A gives

(1.37)
DT> 1 T —1dp®
50 ;00 _ T 4 — =22
@ S RS T a
M-1 o0 . M-1
+ z:: s (6 =8 vTe.vy ;(hi — hS5)%;
DY 1
(b) p>*—= div (p>*°vVY>®)+®Xi=1,...,.M -1

Dt PrReL i

where ¢;°, h{° and ¢{° have analogous formulas as the ones given in (1.23) to (1.26):

M-1
(1.38) (a) Z(c — My
(b) A% :cpT°°+h§’, i=1,...,M

1,..., M, and

Il

J4
(c) &F =Wi) (vij—vi)RY, i
i=1
VI~ o0 O’)f oo Yoo V;”
(d) Rj° =D, {(poo)l i) exp(—Af/T I, <WL> —
k
-— oo v coya? oo Y;>* Vi
K ()T exp(— AT, (wﬁ) }

The derivation of the equation for p> is more subtle than the two previous ones.

Substitution of the expansion (1.32) into the pressure equation (1.20) (a) gives

d o0
(1.39) -Z—t = —pXL¢>* +§
where we used the fact that div v™® = A¢>®. § is a second order differential operator in
T and Y*° given by

(1.40)

1 T y—1 T iy P

(oS 0o ) ~1 ~M 0o o)
= + _— —_— — vT VY
9(1) Y ) PrReF—lAT PrRel' —1 “ 1 Le T )

M-1 4T (1 )
_— - = ] di vY.>
+ ; PrReLe! (Wi I/VM> v (pVY)+

1 v—1
+ )= I‘h;?°—h°°]c1>;?°.
; [ (VVi WM) r-1 ( i)

13




The left-hand side of (1.39) is a function of time alone while the right-hand side involves
functions of both space and time. Therefore, there must exist a scalar function H(¢) of
time alone so that

(141) @) L7 =)

(b)  —p™ LA™ + G = H(t).

This function H(t) which in principle is not specified is in fact completely determined by
(1.41) through fact # 2 quoted above:

By (1.41) and (1.29) ¢ satisfies the boundary value problem

(1.42) A6 = (%) (§ — (1)) in O
0¢>®
on

\39 = 'Uoo.nlag = 0.
Hence, from fact # 2 we know that the right-hand side of the elliptic equation must satisfy
(1.43) [T REEEO)

Q

therefore H(t) is given by the non-local quantity

_ fQ v~ 1Gdx

(1.44) H(t) = [CREE
Q

Going back to (1.41) we see that p is spatially constant and its evolution in time is governed
by averaged effects in space through H(t). Also the potential part of the velocity field V¢
is completely determined by the chemistry of the mixture through (1.41) (b), whereas the
solenoidal part w* obeys the non-homogeneous Navier-Stokes equation (1.36) (b).

Regarding the boundary conditions, it is clear that collecting terms of order zero in A
in (1.28) we get the boundary conditions for T°° and Y;*°

0T gy >®
= (). —— = =1,.... M —1
o lag =0, . lon =0 2=1,...,

(1.45)

and collecting the terms of order zero in (1.27) gives
(1.46) v™|aq = 0.

Using the orthogonal decomposition of v*° given in (1.29) in terms of V¢*>° and w®
and considering the normal and tangential components of the velocity in 9Q we get the
boundary conditions for V¢ and w™:
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(1.48) Equations for zero Mach number combustion

(a) Nonlinear O.D.E. for the mean pressure p™

d v~ 1Gdz
flt =H(t) = ff—_,d,
Q7 aZ

(b) Elliptlc equation for the potential part of the velocity field
= (™) (G- H()

o lag =0

p=(0) =1

(c¢) Non-homogeneous incompressible Navier-Stokes equation

for the solenoidal part of the velocity field

0o DW™ Dv ¢
P TV Re Pt
divw*® =0
w®mnlsg =0, w>® Xnlsgg = —Ve™ X n|sn

(d) Reaction-diffusion equation for T

M-
DT 1 T -

o = AT + ——H(t)

P Cp Dt PrRe }(( Z

~M o o
vT* vY.
rReLe’ % ) ¢

- Z(hw h33)$5°,

3T°°
=0
on loa
(e) Reaction-diffusion equations for Y;*,i=1,... .M —1
DY~ 1
D8 T Priere v PTVYT)F
1) e
=0
on loa =
(f) G is given by (1.40), ¢,°, h;°, ®7° are given by
D 0
(1.38), p= is given by (1.35), and Tl + 0™

Restrictions on the Initial Data. In order for (1.32) to represent a self-consistent
expansion we must require that the initial data satisfy

(1.49) (a) pM(=,0) =1+ A7*pj(z) +0(A7?)
(b) o*(=,0) = v5°(z) +0(A ™)
(¢) Tz,0)=Ts°(z) +0(A ™)
(d) Y z,0) =YP(z)+0(A1) i=1,...M -1

15



From (1.48) (b) there must be a constant Hy so that initially
(e) divvg® =71 (Y5)IS(1, I5°, ¥5°) — 3.
Of course, we must also require that the boundary conditions be satisfied initially
oTs® Y. e

10

1.50 = = p=1.... —
(1.50) (a) o lag = 0, n loaa =0, i=1,...,M—1
(b) v5°laa =0

Equation (1.49) (e) constitutes the requirement of approximate chemical-fluid balance
within terms of order A~! for the initial data which we referred to in (1.31). This require-
ment imposes a constraint only on the gradient part V¢g§° of the velocity field v and
leaves freedom for the choice of the solenoidal component wg®, as long as the requirements

wl.n|ag = 0 and wg® X nlagg = —Vég° X nlag are satisfied .

1.3 Evaluation of H(¢) and examples with Simple Chemistry. As we pointed
out earlier, the evolution in time of p™(t) is governed by the non-local quantity H(¢). It is
therefore of interest to look at the form of H(t) in more detail. After some manipulation
with (1.40) we have the formula,

e e SR U e WA T e
3w =1- [ (1T ><_+_.).
®) { q PrRe zz:: Yy\W;7i—1 Wy ym—1 cs®  Le

1

LS Al A e B W 1 e
1.51 - VT -_vY,.°°dm+/ [ (T ! — )_

Q2 =1 j=1 7 WM 7M—1

-1
y—=1 T 0 50| co -1
‘Tﬁ(hi - h’M)} Wi(vij — vi;) RS dm} ' (/97 dx) .

Next we consider two examples with simple kinetics and record the form of these equations.

Example 1. Assume we have two ideal gases, unburnt gas M; and burnt gas M, both
having the same molecular weight Wy and same v gas constant 7. The unburnt gas M,
undergoes a one-step irreversible reaction into burnt gas M,

My — M,

Using the non-dimensionalization given in (1.21) with Wy, = Wy, ¢’ = %7—2’—3—3 gives
Wy =W, =1, h$® =T + 71‘1’, h$® =T + H? and T' = v = 74. Substituting these values

into (1.51) we get
H(t) = 20Q / R*®dz  where
volQ) Jq
Q =hi—hy and
R™® — pooe—(A/T°°)Yloo

(1.52)
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The equations (1.48) for zero Mach number combustion in this case become

d o0
() o= 2% [ v exp(-a/T)ds

dt vol§)
1
b) Ad® = T oo _ )
(b) ¢ °“’Pr‘ReA +Q<R volf) / R dcc)
3¢°°
on o2 =0
. Dw®™ 1 . o o Dvg®
() p¥ =g + VT = b - T
(1.53) divw>*® =0
W™ nlagg =0, W x n|ag = —V¢> X n|ag
DT> 1 w , Yo—ldp™ oo
) P = AT + I v at TOR
oT™>®
on loa =0
(&) P¥ 5 = PrRere AV (PTVIT) - R
5Y°°| 0.
on N =

where p™ is given by p™ = p>T>

Going back to the equation for pressure (1.53) (a), we see that if the reaction is exother-
mic, i.e., @ > 0 then H(t) > 0, and the mean pressure p> in the vessel increases in time.
This agrees with the intuitive idea that the heat released by the burning of the gas should
increase the pressure inside the closed chamber. Also notice that if we did not impose the
conditions of no flux of heat and chemical species (1.45), then we could prevent the rise in
pressure, for example, by extracting heat through the boundary.

Example 2. Consider two chemical species M; and M; with the same y-gas constant,
Yo, but different molecular weights, Wy = W, and W, = 2W, undergoing a dissociation-
recombination reaction

f
2M, Zb’_ Ma.

If we choose Wi, = W and ¢ = 357 —7— in the non-dimensionalization (1.21), then we
have Wy = 1, W, = 2,h$° = T + A ,112 = 2 ~ + b3 and I' = v = 9. Substituting these

values into (1.51) gives

vol§)
(1.54) Q=h{ —hS and R™ is given by

R® =D {(pwy(ylw)? exp (-?-i) _ g -1 -v)exp ( ;‘;) } .

17
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The equations for low Mach number combustion are in this case:

dp*™ _ Yo @
(@) 7 = e /,

R*®dzx

1] 1 1
b NP> = — S - : O oo o
(b) Aé { AT + oo div (p™ T VY,™)

p>*® | PrRe
+Q( R — L R>d
volQ Jq L
a oo
Gl =0
oo DW™ o 1 o oDV
() P + VT = R AT P
(1.55) divw™ =0
w™ - n|39 =0, w™ X nlag = _v¢00 X nlag
p>® DT 1 Yo—1 dp*™ p
d = oo x| (oo}
(d) T Dt PrRe AT™ + Yo dt + 2PrReLe vIT vyt
TOO
EIATS
2
oT
on loa =0
DYy 1
° = di *vY;>™) - R*®
(e) p Dt PTReLe v (p 1 ) )
ay >

where in this case p™ is given by p® = p*T (}/’100 + Xg_o.)
If we assume that @) > 0, i.e., that the reaction is exothermic in the forward direction,

we notice from (1.54) that the pressure will rise whenever the reaction proceeds in the
forward direction (i.e., when R*> > 0) and it will decrease otherwise.

§2: Low Mach Number Combustion with Infinitely thin Flame Structure.

Here we discuss further simplification of the general multi-dimensional equations of zero
Mach number combustion derived in (1.48) above. We consider simple one-step irreversible
Arrhenius chemistry as described in example 1 above (1.53). We introduce a parameter
¢ which measures the ratio of the flame thickness to the overall integral length scale.
The flame thickness is measured by 7 = K(pp|vp|c,)™! and the integral length scale is
given by diam Q; thus, ¢ = ¢p/diam Q. For many practical problems, {1 varies over
scales smaller than millimeters while diam €2 has the dimensions of meters so we have
€ << 1. Here we present the formal simplification that occurs for the equations of zero
Mach number combustion in the limit, ¢ << 1. These simplified equations are very
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important for numerical simulation of turbulent combustion ([4], [2], [5], [6]) and define an
extremely interesting class of free boundary problems which have not yet been discussed
with mathematical rigor. In sections 3 and 4 below, we present several exact solutions of
these equations in simplified geometries. By identifying the parameter ¢ explicitly in the
nondimensionalization in (1.21) (see [2]) and repeating the derivation of section one for the
equations of zero Mach number combustion with simple chemistry from (1.53), we obtain
the equations

(a) Mean Pressure Equation

dP(t)  t Jo190KpZe 4T
dt vol(§2)
(b) Elliptic Equation

dP
A = (yP(t))™! (——— + %qOKpZe_A/T + 'yeAT)

dt
(¢) Nonhomogeneous Fluid Equation
Dw D
—_—=—p— -V PrA
Dt = Pp;(V¥) — Vp+ePrOw
(d) Reaction-Diffusion Equations
—1dP
Dt S d e tpee T e
Dz K .
P = —g—pZe_A/T + (Le) tediv (pv 2)
(e) Boundary Conditions
oT 0Z

- — —— =0
an|ao an|aQ
v=w+WVvy, divw=0

b

w-nlag =0, %Lm =0
w X ’niag = ——A¢ X n!aﬂ
p=P(t)/T(z,t)

Here we study special initial data in chemical fluid balance with the form for mass-
fraction and temperature given by

(1L bu(e) <0

oy 2 0= { 0, du(z) >0

(2:2) T(2.0) — T, =1- qo, do(z) <0
(x’)_{szl, $o(z) >0

This initial data including the fluid velocity has a jump discontinuity across the surface
So = {z € Q|d,(z) = 0} and is a stochiometric mixture composed of unburnt gas for
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those points € Q with ¢,(2) < 0 and burnt gas for those points x € Q with ¢,(z) > 0.
After we have finished the discussion in this section, the reader can easily verify that
all equations derived below remain valid with obvious modifications for general piecewise
smooth initial data (T'(z),Z(z)) that jump across a surface §,, provided that the non-
dimensional adiabatic equation expressing conservation enthalpy across §,,

(2.3) Ty(z) = Tu(z) 4+ ¢oZ(z) forz €8,

1s valid at all points of S,.

Following ideas of Landau [13], under the above assumption and with the special initial

data for (2.1) in (2.2), it follows that as € — 0, formally the reaction rate is confined to a
surface so that

(2.4) %I\;’Ze‘A/T‘) oz, t)bs, @ € S(2).

Here 8(t) is a surface described by §(t) = {z|¢(z,t) = 0} with ¢(z,0) = ¢,(z) and b5
is the surface Dirac measure concentrated on §(t). The function —m(z,t) is the mass flux
across 8(t) and is determined by the jump conditions for conservation of mass,

(2.5) po(vp n —=V)=py(vy-n—=V)=—m(z,t) forzed(t), V=4¢,/|Ve|

where n is the outward spatial normal to §(t). We will say much more about the formal
derivation of (2.4) at the end of this section. The equation in (2.5) is a consequence of
conservation of mass which is valid for solutions of (2.1) in the limit as e — 0. As e — 0,
from (2.4), the mean pressure and reaction-diffusion equations in (2.1) reduce to

dP B Y4o fS(t) m(z,t)dA

@) & = ol ()
(2.6) (b) %,{— = 77_1%, for ¢(z,t) >0 and ¢(z,t) <0
(c) %f— =0, for ¢(z,t) >0 and ¢(z,t) <0

where (b) and (c) are supplemented by the jump conditions across §(t) appropriate for
data of the form in (2.2) given by

57 Ty(z,t) — Ty(z,t) = qo for z € §(t)
(2.7) Zy(z,t) =0,Z,(z,t) =1 for z € §(t),

while the elliptic equation from (2.1) (b) becomes

dP
Ap = (yP)! <_E + 7(10m68(t))
o

%asz:()-

(2.8)



The nonhomogeneous Navier-Stokes equations from (2.1) (c) reduce to

Dv
(2.9) P D7~ vp = 0 for ¢(z,t) > 0 and ¢(z,t) <0
v-nlag =0

with v = w+ V,div w = 0, w - n|sg = 0. The equations in (2.9) are supplemented by the
jump conditions from (2.5) across 8§(t) and the density is given in the two regions by

_ { P(t)/Tu(xvt)a ¢(.’L',t) <0
P(t)/Ty(z,t),  ¢(z,t) >0

The conservation form of the momentum equation in (2.9) implies the familiar Rankine-
Hugoniot jump conditions,

(2.10)

Vg XM =Vp XN

(2.11)

—

p(V—v-1) vy -1 —vy-1)=py — P
across the flame front. We make the following important remark:

It is consistent to drop the effects of kinematic viscosity, e PrRAw from (2.1) (c) in the
derivation sketched above as regards equation (2.9) describing the interior fluid dynamics.
However, there is the usual nonuniformity at 02 caused by the creation of vorticity at the
boundary through the no-slip boundary conditions in (2.1) (e). This is the usual difficulty
with singular perturbation at boundaries in high Reynolds number flows and is an obvious
source of nonuniformity in the above asymptotics. The effects of viscosity through vorticity
creation near boundaries are typically retained in the numerical simulations utilizing (2.6),
(2.8), and (2.9) ([2], [4], [5], [6]). Here for simplicity in exposition, we simply drop these
terms. The main consequence of the assumption made at the beginning of this section is
that the flame front is idealized as infinitely thin and represented by the surface §(¢). With
the initial data in (2.2), it is very easy to solve the equations in (2.6) (c) to obtain

1, ¢ <0
(2.12) Z(z,t) = { 0 650"

At this state of the derivation, we have four equations for the four unknowns P(t),v,
however, an equation for the unknown flame front §(¢) remains to be determined. The
jump conditions for conservation of mass from 92.5) determine an equation for the surface

8(t) (described by ¢(z,t) = 0) given by

pu(vu-n — ¢:/|Ve|) = —m(z,1)

or equivalently,

m(x,t)
(2.13) bt Pu

45(‘7:’ 0) = ¢o(m)-
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Thus, from (2.13) the points 7(t) on §(t) are described by the equation

dr _ m(z,t)—

(2.14) i n(T) +vu(7)

where n(7) is the outward normal to §(t). Next we indicate how to determine p,(t) from
P(t) (similar considerations apply to py(t)). From the equations, for ¢(z,t) <0,

—1dP
Dp _y=1dP

puTy = P, Puﬁ ~  dt

it follows that in the unburnt and burnt gas, generally,

(2.15) % (”—;> =0

and therefore, for the special initial data in (2.2)
(2.16) pu(t) = p/7(£)pu(0) = P/ (t)p5.

With the above discussion we summarize the equations for Zero Mach Number Combustion

with infinitely thin flame structure for the unknowns P,§(t), v, that we have derived under
the main assumption of this section:

(a) Nonlinear O.D.E. for the Mean Pressure
dP 407 fs(t) m(z,t)dA

dt vol(§2)

(b) Eikonal Equation for the Flame Front §(t)
C;_’t' —vu(T) 4+ m(‘i’t)ﬁ*(?)

(¢) Elliptic Equation

(2.17) _ —1(_dP | goym(z,t)és

A¢=(rP) & T ool
9¢
on 0

(d) Nonhomogeneous Incompressible Euler Equation

Do . DV

P~ P T Ty
divw =0

w-nlag =0

with the orthogonal decomposition v = V¢ + w and the equations %(Pp"’) = 0 on either
side of the flame front.
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In the special case when the domain is unbounded and is a channel of the form discussed
in [4] the constant pressure approximation % = 0 applies for the system in (2.1) and
therefore for the one in (2.17). In this situation, the equations in (2.17) reduce to those
introduced by Ghoniem, Chorin, and Oppenheim in [4]. Furthermore, the equations in
(2.17) show how these author’s formulation can be modified to treat combustion in confined
chambers — the solution of the nonlinear O.D.E. in (2.17) (a) can be easily incorporated
as a separate fractional step in the numerical algorithm described in [4] (see [2], [5] for
numerical simulations).

In the burnt gas region, the temperature is generally nonuniform when € is a bounded
domain. Once the equations in (2.17) have been solved, Tj(z,t) is determined in ¢ > 0 by
solving the linear boundary value problem for the first order equation

D
ETb(il),t)—O

P(t)
Ty(x,t =q, +
b(z,t)[se) = ¢ (@)

Tb(.’B, 0) =1.

The reader can observe that there is still one more unknown in the equations in (2.17),

the mass flux m(z,t), which arises in the flame sheet asymptotics described in (2.4). This
1s our next topic

Empirical and Asymptotic Formulas for the Mass Flux Across the Flame
Sheet. As regards empirical flame propagation laws for m(z,t), Landau ([13]) postulated
that m should be a functional of p, and P determined by the local laminar flame velocity
and others ([14]) have required that m has a functional form determined empirically from
experimental data — either turbulent or laminar. A typical form for m is the power law

(2.18) m(pu, P) = cpl~* P*

where a,c > 0 are constants with % < a < 1; the case a = % corresponds to the laminar
flame law (see [14]).

Markstein ([15]) has suggested that the formula in (2.18) for the mass flux suggested
by Landau be modified to incorporate the local effects of curvature, i.e.

(2.19) m(z,t) = cp * P! — czp—u

where Ry is the local radius of curvature of the flame front (in two space dimensions), taken
positive if the flame front is convex with respect to the unburnt gas. Clavin and Williams
([16]) and Matalon and Matkowsky ([17]) have derived asymptotic formulas for the mass
flux in the flame sheet limit in (2.4) under suitable additional assumptions involving both
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a small flame thickness as well as a sufficiently high activation energy. The most general
derivation which allows for arbitrarily strong jumps in the hydrodynamics across the flame
front is contained in [17] for nearly unity Lewis numbers. This derivation exploits the fact
that there is a second length scale, the reaction layer, which is much smaller than the flame
thickness length ¢ at high activation energies. The result (see (6.1) from [17] for example)
of this asymptotic analysis is a correction to the laminar flame velocity which involves both
the curvature (as in (2.19)) and the flame stretch. In section 3 and 4 we will present explicit
solutions of the zero Mach number combustion equations in (2.17) in special geometries
utilizing either the flame laws in (2.18) (see section 3) or also incorporating some of the
effects of curvature such as with (2.19) (see section 4). For the special geometries discussed
in section 4, we leave it as an exercise for the reader to extend the exact solutions presented
there to some of the other flame laws such as those derived in [17]. All of these types of
flame laws have been used in a variety of recent numerical simulations with (2.17) ([2], [4],

(5], [6]).

83: Zero Mach Number Combustion in a Single Space Dimension—Piston
Driven Flame Sheets.

In this section, we develop several aspects of the equations for zero Mach number
combustion given in (2.1) and (2.17) in a single space dimension. First, we emphasize that
through the introduction of Lagrangian mass coordinates, the equations in (2.1) in a single
space dimension reduce to reaction-diffusion equations coupled with a nonlocal nonlinear
O.D.E. for the mean pressure — in particular, for combustion in a single space dimension,
a suitable generalization of the reaction diffusion equations in (0.1) is a valid model for
combustion with large heat release. We also generalize this construction to the important
practical problem involving piston motion in 1 — D. Finally, we take the infinitely thin
flame sheet limit for piston driven combustion in 1 — D following the general procedure
sketched above (2.17). Finally we solve the resulting 1 — D flame sheet equation with
piston motion for the turbulent flame laws for the mass flux in (2.18).

The system of equations in (2.17) with one step irreversible Arrhenius kinetics becomes
much simpler in a single space variable provided one introduces Lagrangian mass coordi-
nates. We assume that the bounded domain Q is given by 0 < z < 1 and introduce the
change of variables,

(3.17) g(z,1) =/ p(s,t)ds
t =t

where p = TPM. IfM = fl p, then the mass coordinate ¢ from (3.1) varies from 0 to M.
O(IYt) o
From our earlier remark, mass is conserved so that



and one computes from this equation and (3.1) the formulae

ad 0 0 0 D 0
(32) % = Pa_q, '(,% +’U%

Dt ot

The first observation is that in a single space variable every function is a gradient, so that
the momentum equation in (2.22) (b) is trivially satisfied by an appropriate choice of the
scalar pressure Vp and can be ignored. We also observe that it follows from (3.2) that in «
Lagrangian mass coordinate system, the velocity of the fluid does not need to be computed
implicitly in the pressure, temperature, and species equations from (2.1) (a), (d), and also
that these equations form a closed system. The velocity is uniquely determined from (2.1)
(b), (c) and can be found afterwards (if desired) once the equations in (2.1) (a), (d) are
solved in Lagrangian coordinates. Thus, in Lagrangian coordinates, the equations of zero
Mach number combustion in a single space variable become the integro-differential system
of reaction diffusion equations,

(a) % = q‘;7f&' / ! Zye~ AT dq
(b) 92, = (Le)_15—220 _ .Iizoe—A/To

@ o 1v-1df  wk )
© Fo =@ T e ey (”a—To>
(d) P=%,aa—7;’=aa—i°=o at g =0,M.

(The double use of g for both heat release and mass coordinate should not cause confusion.)
For propagation in all of space or an unbounded half-space, we have the constant pressure
approximation and %—;‘1 = 0, so that the system in (3.3) becomes a coupled pair of reaction
diffusion equations in Lagrangian coordinates. This system has a nonlinear diffusion coeffi-
cient in the temperature equation; except for this difference, the equations in (3.3) (b), (¢)
become the standard system of reaction-diffusion equations which many authors have used
as simple model equations for combustion. However, we emphasize here that the previous
derivations of reaction-diffusion equations for combustion in 1 — D occurred in Eulerian
coordinates under a constant density approximation which requires small heat release (see
[1]). Here, we have derived a similar system under the much weaker assumptions of small
Mach number, almost constant pressure, and approximate chemical fluid balance for the
initial data; these assumptions allow for arbitrarily strong heat release.

The Zero Mach Number Limit for the Piston Problem in 1 — D Reacting
Gases. It is well known that the Lagrangian mass coordinates are very useful in studying
1 — D piston motions in gas dynamics — we exploit this fact here. We assume that the
piston path is given by X(t) with piston velocity V(t) = % and X(0) = 1. Besides the
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basic assumptions in the derivation from section 1, we assume additionally that the piston
velocity is always order one in the units of |vy|. In this case, it is convenient to develop
the low Mach number asymptotic expansion directly in Lagrangian coordinates. Since the
total initial mass is M and mass is conserved, ¢ varies over the fixed interval [0, M]. We
assume the asymptotic expansions

p(g,t") = Py +yMPy + O(M?)

v(g,t') = v, + O(M)

T(g,t') = v, + O(M)

Z(g,t") = Z, + OM)

for 0 < ¢ < M. The important difference in this case from the one dimensional situation
described earlier is that the boundary conditions for v become

(3.5) v(0,t') =0, v(M,t')=V(t).

We write the 1 — D equations from section 1 in mass coordinates and substitute the
expansions from (3.4). Since every function is a gradient in 1 — D, the momentum equation
is trivially satisfied through a scalar pressure. The resulting equations for T,, Z, are those
given in (3.3) (b). In a fashion we have already discussed in section 1, the order zero
equation for the mean pressure yields the compatibility equations

d
— P,(t") = H(t'
L Py(1) = 94
OJvg 0 oT K
H(t') = —yP,(t" ) p— — | p—=— — qoZoe Mo,
(#) = —yPo( )Paq te13, (paq)Jrveq €
where we utilize the parameter ¢, defined in section 2. We divide both sides of the second
equation by p, integrate and use the boundary conditions (especially (3.5)) to get

- M —
—PY  vEq, [, Z,emTodg

0 dt’

X () X(')

(3.4)

(3.6)

(3.7) H(t') =

Here we have used the fact that

My X(t)
/ —dg = / dz = X(t).
o P 0

Thus, the equations describing zero Mach number combustion in a 1—D piston chamber
are given by

dPy =P vEq, [ Zeem A Todg
(3.8) @) = @) X(t) and
(b) the reaction diffusion equations for T,(g¢,t"), Z,(gq,t') from (3.3) (b)

as well as the boundary conditions in (3.5). In this case, the velocity is given explicitly by
direct integration of the second formula in (3.6), using the formula for H(¢') from (3.7).
At zero Mach number, all the geometry of the piston motion is incorporated in changes
in the mean pressure P,(t') and withdrawing (pushing in), the piston is accompanied by a
drop (rise) in mean pressure — this is the well-known principle of adiabatic compression.
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Low Mach Number Combustion with Infinitely Thin Flame Structure in
1—D. We examine the Lagrangian zero Mach number equations in a 1— D piston chamber
and summarized in (3.8), in the limiting case described in section 2 involving infinitely thin
flame structure. We show that the equations for nonisobaric flame propagation derived in
a different fashion by Carrier, Fendell, and Feldman [18] are the resulting limit system.
We also present some exact solution formulae for the explicit flame laws given in (2.18).

We consider special initial data for the equations in (3.8) with the form

Tu:]-_qo’ §<QSM
JTq,0)=:{

T, =1, 0<qg<g

(3.9) b S =9=4
1, §<qg< M

Z(Qvo): n

0, 0<¢<q

Following the same reasoning as described earlier in section 2, we take the formal limit as
e — 0 for the equations in (3.8). The result is that the boundary between the burnt and

unburnt gas, the flame front, is described by a curve ¢ = §(t) and the equations from (3.8)
become

dP P dX  ~vqom(q,t')

@ Trxmw - x@)
o ~y—-1TdP . .
3.10 Ot _y-1TdP N
(3.10) ) 55 p 7y T 2m(@,t)é(g — d(t)
oz

(©) S = —m(@,#)6(a — d(t").

with m(§,t') the mass flux. Here 6(¢ — §(¢')) is the Dirac measure centered at ¢(t') and
the formulae in (b) automatically incorporate the analogous jump conditions as in (2.7).

Following (2.13), (2.14), we see from (3.10) (c) that the flame front §(¢') satisfies the
equation

i
(3.11) @ =Mt
q(0)=4¢

and Z(g,t') is determined by

1, > g(t'
zay={ ;) 0TI
0, g<dq(t)
Also, it follows from (2.16) that
(3.12) pu(t') = P05, Tu(t') = P(t)' 77 /05
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Next we illustrate the use of the infinitely thin flame sheet equations by utilizing the flame
law postulate, m(g,t') = m(pu(t'), P(t')). In this case, we summarize the formulae in
(3.9)~(3.12) and obtain that the equations for zero Mach number combustion in a 1 — D

piston chamber with infinitely thin flame structure reduce to the scalar nonlinear O.D.E.
for the mean pressure,

(3.13) 4P | P dX _ ygm(pu(t'), P(t'))
da "X X )

with py(t') given in (3.12). This is the equation derived in (2.16) of [18] with a change in
notation. Once the equation in (3.13) is solved, it is a simple matter to determine the flame
location §(t') and T(g,t') from successive integration of (3.11) and (3.12). In fact, for the
turbulent flame laws in (2.18), it is very easy to integrate (3.13) explicitly and obtain exact
solution formulae which can be useful in checking the validity of these model equations
through detailed 1 — D numerical experiments. For these flame laws, we introduce

l-a

6=a+ , 0<b<1
Y

Q= (7~ 1)gQ(p3)' 4,

then the mean pressure P(t') is given explicitly by (with P(0) = 1,X(0) = 1)

—1_
1-6

(3.14) P(t) = ((1 - 6)Q /OtX7—1—97(s)ds+ 1) X7,

More general initial data for T, Z than those in (3.9) are easily incorporated in the model,
but we omit these straightforward modifications.

§4: Exact Solutions for Special Geometries of the Equations for Zero Mach
Number Combustion.

In this section, we present some exact solutions in special geometries of the equations in
(2.17) which describe combustion processes in the limit of both low Mach number and for an
infinitely thin flame front. These solutions explicitly display the interaction of a variety of
effects on the flow field and flame speed, including curvature of the flame front, confinement
to a bounded region and the change of vorticity in the wake of swirling flames. They
provide interesting simple solutions for code validation and also clearly display the effects
of vorticity production at curved flame fronts. These effects have been ignored in numerical
modelling to date ([5], [2] and [4]), so these exact solutions provide simple estimates of
the effects ignored by these earlier models. It would also be interesting to investigate the
nonlinear stability properties of these exact solutions through both numerical and analytic
analysis. The cases considered here involve 2 — D inviscid flows in simple geometries such
as planar or circular flame fronts in both bounded and unbounded domains. Cases with the
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flame front moving into shear layers are considered. The exact solutions presented below
readily generalize for other flame laws such as those in (2.18), (2.19) as well as including
flame stretch, etc. — here we include only curvature effects for simplicity.

As discussed in section 2, we need an equation for the mass flux in describing solutions
of the equation in (2.17).

We will use the form used by Ghoniem and Knio [5] which is based on some empirical

results of Metghalchi and Keck [19]. This form of the mass flux incorporates some of the
effects of the curvature of the flame front. It is given by

(L1) m(z,t) = Nypl-epeth _ N, 2u
Ry

where N1, N3, and f are constants (see (2.19). Ry is the radius of curvature of the flame
front, taken positive if the flame front is convex w.r.t. the unburnt gas. N, is small and
we require Ry to be large enough so that m > 0. In [19] @ and S were determined by
curve fitting some experimental results for the burning of propane at different equivalence
ratios. For a more complete discussion see [5] and [19]. Three sets of data given in [19] are

(2.27,-0.23)
(1.2) (a,f)={ (2.13,-0.17).
(2.02, —0.17)

In lieu of equation (2.16) we will rewrite the form of the mass flux as

(13) m(a,t) = QuPY(t) — Que )
where

Bt (a1t
(1.4) n=pF+(a-1) ot

For the data given by Metghalchi and Keck n + 1 > 0 for any value of v > 1 and n > 0
if v > 1.22,1.18 or 1.20 for the three sets of data respectively. We will use the mass flux
from (I.1) with the assumption that 7 > 0 and that Ry is sufficiently large so that the
mass flux is positive.

Because of the simple geometries involved in the problems considered here we will make
some simplifications in the equations derived in (2.17). In all the cases we will consider
below the curvature of the flame front will be a function of time only and hence the mass

flux is also a function of time only.
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The value of ¥ and w are not really of interest. What we are interested in is the velocity
field v. We replace the hydrodynamic equations and boundary conditions in (2.17) with

the equivalent equations,

- . -1 4P
V-0 = ———
YT NP dt
(L.5) v-nlag =0
and
Dv =
1.6 Dv _ G
(1.6) P oy = VP

gom(t)
P(t)

We now turn to a discussion of the jump conditions. The pressure P(¢) is continuous
across the flame front and the jump conditions for the density and temperature are given
in section 2. The Rankine-Hugoniot jump relations for the hydrodynamics are the familiar

equations

(1.7)
(1.8)

and

(1.9)

where

(1.10) Sn

pb(Sn - ;;b . 7_7:) = Pu(Sn - 5>u : ﬁ)

—_ —_— —_ —
Vy XN =0Vp XN

p(Sn =0 ) (V-1 — Uy )= Pu— P

dr -
— n
dt

is the normal velocity of the flame front. As described in section 2, the mass flux m is

equal to both the terms in equation (I.7).

Summary of Equations. Since the assumed mass flux, for the simple geometries to

be considered here, is a function of time only,

(S.1)
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the pressure equation can be written as

(S.2) 4P _ qym(t)A(t)
dt vol(2)

where A(t) is the surface area of the flame front. In the interior of the regions of burnt
and unburnt gases the velocity is determined by the divergence equation

= _ -1 dP
S.3 V-p = —_ 22
(5:3) CTAPM) dt

the momentum equation

(S.4) — = Vp*™®
and, in the case of an enclosed region, the boundary condition
(S.5) v -7 laq = 0.

along with the jump conditions

(S.6) pu(Sn — Zb ’ -T_{) = pu(Sn — T;u : 7_{) = m(t),
where S, = i_f—— .7, and
(57) X T =Ty T

on S(t). The initial conditions for the velocity field will depend on the problem, as will

the far field conditions in the case of an unbounded domain.

The pressure, density and temperature of the gas are related by (see section 2)

(S5.8) P = pT,
D, 5 —
so that
(S.10) pu(t) = po P17 (1)
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The quantities py, Ty are determined across the flame front, S(t), by

P
S.11 _ _Put
( ) po P +QOPu
and

From the equation in (S.6) for conservation of mass we obtain the equation

Pu

which governs the position of the flame front. The initial conditions we will use for the
density, temperature and pressure are

(5.14) os(0) = Tu(0) = P(0) = 1
1
(5.15) pul0) = po = ——.
— 4o
In the following we will not mention the temperature, as it is easily determined from the
pressure and density via equation (S.8).

Planar Flame Fronts. CASE I: Unbounded domain without shear For the first case
we consider a very simple planar problem. The flow depends only on z and ¢t and only the
velocity component in the z direction, u, is nonzero. The position of the flame front is
given by z = S(t) with the unburnt gas in the region z > S(t).

The right hand side of the pressure equation (S.2) is zero so we immediately see that
the pressure is constant and, from equation (S.10), so is the density of the unburnt gas.
It follows that the density of the burnt gas at the flame front is equal to one everywhere
and so from equation (S.9) we deduce that p is equal to one away from the flame front as

well. Thus

P(t) = P(0) = 1
(P.1) pu(t) = poP'7(2)
— P _
pilt) = 14 qopo !

The divergence and momentum equations for the velocity, equations (S.3) and (S.4), to-
gether with the added condition that the flow be uniform as z — Zoo say that u, and w,

are constant. It follows then, that we are free to choose our reference frame so that
(P.2) uy = 0.
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Since the mass flux, via (S.1), is constant, say
(P.3) m(t) = Q1 = my,

we easily obtain from (S.6) that

(P4) S(t) = 22t + S,
Po
and

CASE II: Unbounded domain with shear We now reconsider the previous case by letting
the planar flame front move into a shear layer. As before we let u be the velocity in the z
direction, which is the direction the flame front moves in. Let v be the velocity in the y
direction where z — y is the usual cartesian coordinate system. Initially the shear is given

by
(P.6) v(z,0) = vo(z).

As in the previous case the pressure and densities are constant and are given by (1).
Since there is no y dependence the curvature of the flame front remains zero and the mass
flux is again constant, given by (3). From the divergence equation (S.3) we have

Ju
P.7 — =0
(P.7) 52
and hence u is constant. Choosing the same reference frame as before we see that the
velocities and the position of the flame front are unchanged from the case without shear.
Continuity of the tangential velocity gives

(P.8) vy =vp atz=S5()

and the y component of the momentum equation gives

Gy _ O g
at 10 0 — Y-

(P.9) o

A simple calculation then shows that

vu(z,t) = vo(z)

vp(z,t) =0 (:1: + q0m0t>
t)=v | —F—
14 qopo

(P.10)
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so the velocity is no longer steady in the burnt gases. The vorticity jump across the flame
front is

ov,

=40

(P.11) 6C=Cum G = ("’”“ _ ﬂ)
S(1)

Oz Oz

5(t)

thus the expansion of the burnt gas decrease the vorticity in the shear layer.

CASE III: Bounded region with no shear Next we investigate the effects of containment
of the flow in a closed vessel. One immediate change is that the pressure and the density
of the unburnt gas are not functions of time. As a consequence the density (and hence the
temperature) of the burnt gas will vary not only with time but spatially as well.

As the simplest case we take the region 2 to be a closed cylinder with cross-sectional
area A and length L. The axis of symmetry is aligned with the z-axis with the left end at
z = 0. For this first example in a bounded region we take the flow to be one dimensional.
This means that all variables depend only on z and ¢ and that only the velocity component
along the axis of symmetry, u, is nonzero. The unburnt gas is to the right of the planar
flame front so that the unit normal n points in the positive z direction. The pressure is
easily determined. Equation (S.2) gives

P q,
(P.12) — qL7m(t) — BPY(1)
where
(P.13) B=%¢q, >0

L

With the initial condition (S.14) this can be solved to give
(P.14) P(t) = (1—nBt)"7.

The divergence equation gives

ou ___1 dP
(P.15) oz  4P(t) dt

which is easily integrated to yield

z 4P ).

Wet) = = Tp0 @
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By using the boundary conditions that u =0 at z = 0 and at 2 = L we have

x dP B
P.1 - 21— -1
(P.16) up TP m7(1 nBt)
and
1 dP B
P.17 - =(L—z)=(1- -1
(®.17) w= (L= D)= = (-0 Za - By

Note that if 7 is positive then it appears that there is a potential for the pressure and
velocities to blow up in finite time. We will see later however that the flame front reaches
the end of the cylinder before that time.

From the equation governing the position of the flame front (S.13) we have

(P.18) fg _ (u N _pn_z%)

This can be solved by using the solution for P(t), giving

1 dP m(t)

= SO+ S P

L _
(P.19) S(t) =L+ ——(1-nBt) ¥ + (50 ~-L- > (1-nBt)7,
TPogo YPogo

where the constant Sy is the initial position of the flame front. One can easily determine

that the time ¢; when the flame front reaches the end of the cylinder is

— (L — Sp)2eete +1)7"
nB '

1
(P.20) tg, =

Note that since L > Sy it follows that

(L -5 +1>1

so that if » > 0 then B%) > t; > 0 and if n < 0 then, since both the numerator and
denominator are negative ¢y, is also positive. Thus the flame front always reaches the end
of the cylinder and P, u; and u, remain finite.

Now that the pressure and the velocity of the burnt gas are known the density of the
burnt gas is found by solving equation (S.9) with the initial condition determined by the
jump condition (S.11). The important thing to note is that p; is a function of z and t.

Otherwise we would have
~
= 1
S(t) dt 1 + ‘ZOPOP“’

which is false because dd—f # 0. The temperature field on both sides of the flame front is

D o/P) = 011P) = S (7/P)

then found by using the ideal gas law.
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Circular Flame Fronts. In the following examples we consider circular flame fronts
in two dimensions. We will use r — 6 coordinates with corresponding velocities v, and vy,
where positive vg denotes counterclockwise rotation. Denoting the radius of the circular
flame front by R(t) the mass flux is given by

1

(c) milt) = QP - Qu
if the unburnt gas is in the region r > R(t), and by

1
(€2) mo(t) = QP + Qo

if the unburnt gas is in the region r < R(¢). The subscripts ¢ and o refer to the direction
of the mass flux, inward or outward.

In all cases considered the flow will be independent of 8.

CASE I: Unbounded domain We first consider unbounded domains with, in general, a
circular shear layer. As we will see the angular and radial velocities decouple so that the
radial velocity is not effected by the angular velocity. As in the case of plane waves for
an unbounded domain we have constant pressure and density as well as a divergenceless
velocity field. Specifically, we have

P(t) =
1
u(t) = =
pu(t) = po 1— g
Po
C.3 )= ——— =1
(C.3) pu(t) T+ qome
and
= - 1 r
V'v____a(rv)_o
r Or
The divergence equation gives
a(t
(04) Vy = —T'_

for some arbitrary function a(t).

There are two subcases to consider since we can either have the unburnt gas inside
or outside the flame front. we will first discuss the subcase for which the unburnt gas is
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outside the flame front, i.e. in the region r > R(t) so we have a circular flame expanding
outward. Imposing finite velocity at r = 0 gives

(C.5) vy, = 0.
Noting that

dR

Sn = pr

we see that equation (S.6) gives, using pp = 1,

Q2

(C.6) 0

dR dR
U{:PO (E_vru>—m2() Q1 —

which can be solved to give an implicit formula for R(t),

1 QR-Q:
e - g R+ G (G2

where Ry is the position of the flame front at t = 0. We assume that R, is large enough so
that dR > 0. The expression (C.1) for m; is after all an approximation for the mass flux
and is not valid if R is to small.

It is now an easy matter to determine v,,. First, using (C.6) we see that & = m,(¢)
so that

m;
(C.8) vr, |R(ty = ™Mi — p—l = qomi(t).

u

Evaluating (C.4) at r = R(t) determines a(t). The end result is

R(t)

r

q
(C.9) Ur, (T»t) = Ury lR(t) = ?O(QIR(t) - QQ)
We now turn to the angular velocity field. Let vg, (r) be the initial angular velocity in

the unburnt gas. The momentum equation for the angular velocity is, since the flow is
independent of 6,

(C.10) Ovg Ovg  v,vg

9, 98 —0.
T T

We define z,,(t) to be the radial position at time t of a particle of gas which had radial
position rg at time t = 0. The function z,, (t) satisfies

de,, (@r1t)
(C.11) at e
Ty, (O) =T0



Then, by equation (C.10),

%(MAWM%AW0>:WW+x”(
=0.

6’09 0’09
'§+“5>

Thus, the differential equation (C.10) implies that the angular momentum is constant, i.e.
(C.12) Ty, (t)ve(zr, (1),1) is constant
Solving equations (C.11) in the region r > R(t) we have

de,, _at) _ R(t)
— = vr, (T, (1),1) = e, (1) xro(t)vr"(R(t),t)

_ R(t)dR 1
‘MWEO‘Z>
_R(t) dR

T ) dt

so that, using the initial conditions R(0) = R, and r(0) = ro we have
(C.13) r2(t) — r2 = qo(R%(t) — Ri(1)).

Thus the angular velocity in the unburnt gas is given by

(C.14) vo, (r,1) = 70, (ro)
where
(C.15) ro(r,t) = \/7‘2 — qo(R%(t) — R}).

To determine the angular velocity inside the flame front we note that because the radial
velocity is zero in this region the angular velocity is independent of time. Define T'(r) to
be the time when the flame front was at r. Then by continuity of the tangential velocity
across the flame we have

vy, (r) = vy, (1) for r < Ry

(C.16)
vg, (1) =vg, (r,T(r)) for Ry <r < R(1).

From equation (C.7) we have

N L po Q2 Qir — Q2
(C.17) T(r) = 50— Fo) + 3 ”<—Q1R0—Q2>'
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We will now calculate the vorticity jump across the flame front. The vorticity is given

by

_10(rve) 10vr _vs , Ove
(C.18) C_r or _r09_r+3r'

and we want to calculate

(C.19) 6C(t) = Cu(r(),0) — Col(R(1),0)-

Now using equation (C.16) we have

= 2y D05, 7(0)) + e (T G
so that
Goinio = 20D ¢ B () 1) + S ), 0 5 (R0

By continuity of vy across the flame front we have

e (R(t), 05 (R(1).

(C.20) 8¢ =

Using equation (C.10) to replace the t derivative, noting that % = m,-l( o) and using the
fact that v, |r) = qomi(t) leads to

. 0v9u Vg,
(C.21) 6¢ =qo( ER " >|R(t)

This ends our discussion of the first subcase for which the unburnts gas was in the region

r > R(t).
We now take up the second subcase where the unburnt gas is confined to r < R(t). As
already noted, the pressure and densities are constant, given by equations (C.3). Equation

(C.4) also holds so we have

(C.22) vy, = 0.

The flame front position R(t) and v,, are determined by

d dR
(C.23) L é’i 9

dt Ur, = —pO’E = 7n0( )
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since now n is pointing inward, i.e. opposite the direction of 7. This leads to
0
(C.24) vy = (QuR() + Qa)

where R(t) is given implicitly by

__Po o Q2pan Q1R+Q2)
(C.25) =0, (B~ R+ 5rt (Q1R0+Q2 '

We note that v, is positive, as it must be because of the expansion of the gas upon being
burnt.

The angular velocity of the unburnt gas is constant in time since v,, = 0. There are
two regions in the burnt gas to consider; gas which was initially unburnt, region I, and
gas which was initially burnt, region II. Let r = B(t) be the boundary between these two
regions.

First, we consider region II, Using conservation of angular momentum, equations

(C.12), we have

(C.26) v () = 2T 5 o))

T

where, again, rq(r,t) is the initial radial position of the gas which has radial position r at
time t. The function r¢ is determined, as before, by solving

dzr,

dt = vrb(xro(t)’t)
.’L',-“(O) =To
from which we obtain
(C.27) ro(r,1) = /a0 po(R2(t) — B) + 2.

Setting ro equal to Ry and solving for r determines B(t) as
(C.28) B(t) = (14 g0po) RS — qopo R*().

We now turn to region I, which contains gas which was initially unburnt. Let T'(r,1)
be the time that the particle of gas which has radial position r at time ¢t was at the flame
front. Conservation of angular momentum and continuity of angular velocity gives

rvg, (r,t) = R(T(r,t))ve, (R(T(r,1)), T(r,1))
= R(T(r,t)) e, (R(T(r,1))).
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We need to determine the function R(T(r,t)). This can be accomplished by solving

dr
E = Up, (T(t), t)

along with the condition that at time T'(r,t) the particle was at the flame front, i.e.
r(T(r)) = R(T(r))

Thus we replace both vy and Ry by R(T(r,t)) in equation (C.26) and solve for R(T(r,t)).
This gives

(C.29) R(T(r)) = \/ r J;i”zzf(t).

Summarizing, we have

ve,(r,t) = v, (r) r < R(t)
(C.30) vg,(7,t) = folrt) v, (ro(r, 1)) r > B(t)
vay(r,t) = w0, (R0, ) 2EBD Ry < < By

where ro, B(t) and R(T(r,t)) given by (C.27), (C.28), and (C.29) respectively. Calculation

of the vorticity jump proceeds as in the previous subcase and yields

6v9u Vg,
(C.31) 6¢ = Cu|r(t) — Cb|R(t) = Q0 ( T, ) |R(t)

which is the same formula for the previous subcase (see equation (C.21)).

CASE II: Bounded domain We next consider the effect of containing the circular flame
front of the previous example in a closed region. Let the region 2 be a closed cylinder
with length L and radius C. The flame front is concentric with the cylinder.

The pressure equation (S.2) gives

dP  2qyy

D) R \T
(C.32) 7 o2 m(t)R(t)
and the divergence equation gives

. 10(rv.) 1 dp
(C.33) r Or  4P(t) dt’
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The latter equation has the general solution

r  dP a(t
(C.34) = —spmar (T)
Imposing the boundary conditions at » = 0 and at r = C gives the radial velocity as
©35) o= { Tk i = B P
(S -7) b = (1 - &) Lomfon) Rit)<r<C

For the case where the unburnt gas is in the region r > R(t) so there is an expanding
spherical flame then equation (S.6) gives

(C.36)

dR _ my(t)  R(t) dP _ mi(t) (02 —R2(t)> 1 dpP
dt — pyrey 2YP(t) dt  pu R(t) 2vP(t) dt

Using equation (C.32) to remove the P derivative we obtain a coupled set of equations for

P and R;

a8 _ 207 (1)R()

C.37) at e

( dR  m(t) ) R2(t)\ qomi(t)
s *(‘ 02) P(t) -

A similar procedure for the case where the unburnt gas is in the region r < R(t) gives

dR  my(t) R(t) dP _ my(t) C?* — R%(t) 1 dP
(C.38) dt T py 24P() dt  pyrey * ( R(t) ) 2vP(t) dt

and the coupled set of equations for P and R;

ar = 2qo77no(t)R(t)
(C.39 dt C?
-39) AR me(t) g0 R*(t)m(t)
dt  pa C? P(t)

The mass fluxes m; and m, are given in terms of P and p, by equations (C.1) and
(C.2) respectively. In both cases p, is given in terms of P(t) by

1
Pu = po P (t).

Note also the pressure increases monotonically and that R(t) goes in the direction of the
unburnt gas in both cases. Angular momentum is conserved (see equation (C.12), which
still holds), so the angular velocity is calculated via

(C.40) zr, (t)ve(zr, (1), 1) = zr, (t)ve(20, (1), 1)
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where z,, is the radial position a particle of gas at time ¢ which had position ry at t = 0.
Thus z,, is determined by

dr,, (20 1)
(C.41) at e
33,-0(0) =Tq.
Solving this we obtain
(C.42) (C* - mio(t))P'b(t) = constant for r > R(t)
(C.43) :L'Tu(t)Pilv' (t) = constant for r < R(t)

For the unburnt gas we set ¢ = 0 and invert the equations (C.42) and (C.43) to give
ro as a function of r and ¢ to obtain

To _
Vg, (T‘, t) = ':0'09“ (T)

where

- 1) = 2 _(C2 — p2\P* . o
(C.44) ro(r, 1) = \/C1 (C? —r2)P3(t) unburnt gas in r > R(t)
ro(r,t) =P (1) unburnt gas in r < R(t)

In order to determine the angular velocity in the burnt gas we define T(r,t) to be the time
that a particle which has radial position r at time ¢t was at the flame front. In terms of T

the angular velocity of the burnt gas is given by, after using continuity of vy at the flame
front,

(C.45) vy (1, t) = ELTE‘T—’t-)_)

ve, (R(T(r,t)), T(r,1)).

The function T is given implicitly by

(C.46) TPE{’_(t) = R(T(Tat))P%(T(T,t)) unburnt gas in r > R(t)
(C? - rz)P#(t) = (02 — Rz(T(r,t))P#(T(r,t)) unburnt gas in r < R(t).

Note that in both cases the right had side is strictly monotonic and hence we can invert

and find T. Also T(R(t),t) = t. Differentiating w.r.t. r and evaluating at r = R(t) we
obtain

(C.47) = (dR or 0T> ]R( |
t

dat or U ar
and so
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oT 1

Or |r(t) id—’ti - Uy,

(C.48)

This is true in both cases.

Calculation of 6¢ = (y|r(t) — Cb|r(t) then goes as follows. From (C.45) we have

_ e, [_% + 1 (dR oT Ravgu dR OT R@vau g)]
r

r

@ o T s war T o o

_ 1 dR 6T Ve, a’vgu ﬂavgu
=7 [REE ( R o > R o ] ‘tzm,t)‘

t=T(r,t)

Using the §-component of the momentum equation to eliminate the time derivative of vg,
we have
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t=T(rt)

Evaluating this at » = R(t) we obtain
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Thus
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Note that the term in brackets is just the vorticity of the unburnt gas at the flame front.
Using equation (S.11) which relates p, and p, at the flame front we see that

. P
(C.50) Colr(1) =

P aop 1

Thus, the vorticity is reduced behind the flame, due to the decrease in density.
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Discussion. Now that we have solved the equations for a variety of simple situations
we can discuss some of the effects of curvature and containment of the gas.

First we consider the effects of containment. Containment of the gas in a bounded
region results in a buildup of the pressure P(t) and of the densities. It also results in the
burnt gas becoming nonuniform. This increase in the pressure results in an increase in the
mass flux, since 1+ 1 > 0. From equation (S.6) we find that the flame speed w.r.t. the
unburnt gas decreases as the pressure increases, provided that v is less than 2 which is
always the case.

The effects of incorporating a curvature dependence of the mass flux is to reduce/increase
the mass flux if the flame front is convex/concave w.r.t. the unburnt gas. This results in
a corresponding decrease/increase of the flame velocity w.r.t. unburnt gas.

The effects on the vorticity jump of enclosing the gas in a finite volume as well as

the effects of curvature dependence of the mass flux are all contained in equation (C.49),
namely

qops (Ove, | Vs,

(C.51) 5 = L (? + T) )Rm

In all cases, the expansion of the gas behind the flame front reduced the vorticity. Note
that as the size of the containment vessel becomes infinite both p, and P approach 1 and
the vorticity jump for a circular flame front in an unbounded domain is recovered. Next
by letting the value or r go to infinity the vorticity jump for a planar flame front in an
unbounded domain is recovered as well. We also note that in a confined chamber

Pb 1

Plr@ gy +4 poP' ™%

decreases with time since v > 1 so the vorticity jump is less prominent in confined circular
geometries.

We end our discussion with the following remark: For flame fronts moving in two space
dimensions, there is a general procedure to compute the vorticity field. In both burnt and
unburnt gas, we have the equation, % <“;’) = 0 while the vorticity jump across the flame
front is determined from the general formula of Hayes ([20]). The formulas for the vorticity

jump given explicitly in the simple geometries are the same as those computed through
this general formula.

§5: Some Mathematical Problems in Zero Mach Number Combustion with
Strong Heat Release.

Here we give a brief discussion of important open problems regarding the equations
for zero Mach number combustion.

Problem # 1 Find interesting conditions on the initial data so that Embid’s local ex-

istence theorems ([7], [8], [9]) for (0.2) and (1.48) extend to global existence theorems —
perhaps, as suitable weak solutions.
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Problem # 2 Follow ideas of Klainerman and Majda ([21]) and extend Schochet’s work
([10]) to give a rigorous derivation of the next term in the low Mach number asymptotics.
This term involves linear equations for acoustical noise at low Mach numbers — an im-
portant practical topic ([22]). Also, extend Schochet’s derivation from the inviscid case to
allow for fixed non-zero Prandtl and Lewis numbers for the equations in (1.1).

Problem # 3 Formulate and prove a suitable global existence theorem for the 1 — D
integro-differential reaction diffusion system in (3.8) and (3.3). Also consider other bound-
ary conditions that allow for fuel injection. Find conditions on the piston motion, X (t),
which guarantee this existence theorem. For appropriate boundary conditions for T', Z and
suitable time periodic piston motions, X (t), decide whether the system of equations in (3.8)
and (3.3) has time periodic solutions. Are chaotic dynamic motions of the equations in
(3.8) and (3.3) possible with periodic piston motions X (t)?

Problem # 4 Using high activation energy asymptotics, provide rigorous justification
(even for short times !) for the one-dimensional flame sheet equations in (3.10) including a
formula for the mass flux, m(§,t'). This is a difficult but important first step in providing
a rigorous understanding of the formal limit in section 2.

Problem # 5 Find other interesting exact solutions of the flame front free boundary
equations in (2.17) besides those presented in Section 4. A systematic linear and nonlinear
stability analysis of the exact solutions in section 4 which delineates the role of curva-

ture, confinement, and vorticity production on the stability of solutions would be very
interesting.
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