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A Quadratic Curve Equating Method to Equate the
First Three Moments in Equipercentile Equating
Tianyou Wang and Michael J. Kolen

American College Testing

A quadratic curve test equating method for equating
different test forms under a random-groups data collec-
tion design is proposed. This new method extends the
linear equating method by adding a quadratic term to
the linear function and equating the first three central
moments (mean, standard deviation, and skewness) of
the test forms. Procedures for implementing the
method and related issues are described and discussed.
The quadratic curve method was evaluated using real
test data and simulated data in terms of model fit and

equating error, and was compared to linear equating,
and unsmoothed and smoothed equipercentile equat-
ing. It was found that the quadratic curve method fit
most of the real test data examined and that when the
model fit the population, this method could perform at
least as well as, or often even better than, the other
equating methods studied. Index terms: equating,
equipercentile equating, linear equating, model-based
equating, quadratic curve equating, random-groups
equating design, smoothing procedures.

In standardized testing, multiple test forms are
needed because examinees must take the test at dif-
ferent occasions and one test form can be adminis-
tered only once to ensure test security. Thus, test
scores derived from different forms must be equiva-
lent. Efforts can be made in the test construction pro-
cess to make different forms as nearly equivalent as
possible (e.g., forms can be built based on the same
table of specifications, or items can be selected to
have approximately equal average difficulty level).
However, these efforts are often not sufficient to en-
sure test score equivalence for different forms. There-
fore, test equating based on test data is often
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performed to adjust test scores so that scores on dif-
ferent forms are more nearly equivalent.

There are several designs for collecting test
equating data. One of the designs is the random-
groups design, in which different test forms are
administered to different but randomly equivalent
groups of examinees. Under the random-groups
equating design, the examinee groups that take dif-
ferent test forms (for simplicity, say, Form X and
Form Y, and Form X scores are equated to the Form
Y score scale) are regarded as being sampled from
the same population. The differences in score dis-
tributions for different test forms are attributed to
form differences and sampling variations of the
examinee groups. Equating Form X to Form Y in-
volves transforming the X scores so that the trans-
formed Form X scores have the same distribution
as the Form Y scores. If an assumption can be made
that the population distributions for Form X and
Form Y scores have the same shape and only differ
in mean and variance, then the linear equating
method will be most appropriate. Linear equating
(Kolen & Brennan, 1995, p. 30) takes the form

where
x is the score on Form X,

Ilx and yy are means for Form X and Form Y,
respectively,

crx and aY are standard deviations (SDS) for Form
X and Form Y, respectively, and

ly(x) is the equated Form Y score for x.
If no assumptions can be made about the shape

of the population score distributions, equipercentile
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equating (Braun & Holland, 1982; Kolen &

Brennan, 1995, p. 35) is the method of choice.
Equipercentile equating for a discrete score distri-
bution is given by

where
P means probability,

X and Y are random variables for Form X and Form
Y scores.

Equipercentile equating based on samples may
have large sampling error because for any particular
score, the equating relationship is based on local fre-
quencies at that score point. Two types of smoothing
techniques have been introduced to reduce random
errors: presmoothing and postsmoothing. Pre-
smoothing smooths the score distributions for Form
X and Form Y separately prior to equating and
equates the smoothed score distributions. Post-

smoothing (Kolen, 1984) smooths the equipercentile
equating function after unsmoothed equipercentile
equating has been implemented.

Studies have been conducted to evaluate the lin-

ear, presmoothing, and postsmoothing equating
methods (see Cope & Kolen, 1990; Fairbank, 1987;
Hanson, 1990; Hanson, Zeng, & Colton, 1991;
Kolen, 1984). Results from Hanson et al. (1991)
showed that smoothed equating was more accurate
than unsmoothed equipercentile and linear methods
in terms of mean squared errors. However, linear
equating consistently had smaller random error than
the pre- and postsmoothing methods, especially when
sample sizes were small. This finding resulted be-
cause the linear method uses only means and SDS in
computing the equating equation and these aggre-
gate statistics typically have small sampling variabil-
ity. However, a fundamental limitation of linear
methods is that if the shape of the distribution of Form
X scores is different from that of Form Y scores in
the population, the linear equating function could be
seriously biased. Although an increase in sample size

could reduce standard errors of equating, it will not
reduce bias. Angoff (1987) commented that equiper-
centile equating lacks a theoretical basis whereas lin-
ear equating makes strong statistical assumptions that
are often violated. He suggested that consideration
be given to equating methods that use theoretical
models that take into account higher moments. The
purpose of this study was to propose a quadratic curve
equating method and to compare it to other equating
methods. If successful, the quadratic curve method
would produce less random error than other pre- or
postsmoothing equipercentile methods, and less bias
than the linear method.

The Quadratic Curve Equating Method

In selecting a nonlinear equating function, the
following aspects were considered:
1. The function should be more flexible than the

linear function.
2. The function should preserve beneficial proper-

ties of linear equating, such as using statistics with
small random errors that are computationally
simple.

3. The performance of this method should be com-
parable to more complicated techniques such as
smoothed equipercentile equating in most, if not
all, testing situations.

Based on the preceding considerations, a quadratic
curve to relate scores on Form X to Form Y was

proposed that takes the form

The coefficients a, b, and c are determined such that
the equated Form X scores will have the same mean,
variance, and skewness as the Form Y scores. The
difference between this relationship and the linear
equating relationship is that it has one additional
squared term and that skewness is taken into account
in computing the equating function. The assumption
underlying this method is that if population distribu-
tions are used and the appropriate quadratic equat-
ing relationship is established to equate the first three
moments, then all the moments of the equated Form
X score distribution will be the same as those of the
Form Y score distribution.

The first three central moments (mean, variance,
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and skewness) can be equated by equating the first
three noncentral moments (moments about the ori-
gin) by the definitions of those central moments.
For simplicity, the equations that involve noncentral
moments are solved to determine coefficients a, b,
and c:

where E represents expectation. If q(X) is substi-
tuted in these equations,

The left-hand sides of these equations are functions
of a, b, and c, the first six moments of Form X
scores, and the first three moments of Form Y

scores. When population distributions are not
known, sample moments are used. The multivari-
able Newton-Raphson iterative method (Press,
Flannery, Teukolsky, & Vetterling, 1992, pp.
379-382) can be used to simultaneously solve this
set of equations for a, b, and c, iteratively.

Another relatively simple procedure is to find
one coefficient at a time. This procedure uses the
property that linear transformation does not change
the skewness of a score distribution. With skew-
ness of any score distribution Y defined as

this procedure takes the following steps:
Step 1. Using the single-variable Newton-
Raphson iterative method (Press et al.,1992, pp.
362-367), find d so that Z = X + dX2 has the
same skewness as Y [i.e., S(Z) - S(Y) = 0].
Step 2. Let g be the ratio of the SD of Y to the SD

and skewness as Ybecause multiplication by the
constant g does not change the skewness of Z.

dX2 ) has the same mean, variance, and skew-
ness as Y because adding a constant does not
change the skewness or variance of a score dis-
tribution.

Step 4. The three coefficients in Equation 3 are
then computed:

Some Technical Issues

Symmetry. One of the requirements for an
equating method is symmetry. That is, the same
equating relationship should result whether Form
X is equated to Form Y or Form Y is equated to
Form X. This quadratic function is clearly not sym-
metric because different orders of moments are used
for Form X and Y scores. Kolen (1984) proposed
an average of two equating relations obtained when
Form X is equated to Form Y and Form Y is equated
to Form X. However, this treatment still does not

yield exactly symmetric results.
For the quadratic method, a weighted average

of the two equating functions is used. Suppose for
a given score x, the equated score obtained from
one direction is yl, that from the other direction is

Y2. and the two first derivatives at score point x are
dl and d2; then the weighted average is
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or

The present authors derived this weight for the lin-
ear case. The rationale is to find the line that di-
vides the angle between y, and y,. This weighted
average is guaranteed to be symmetric for the lin-
ear case. For the quadratic curves in this situation,
the curvature can be expected to be very small. Thus,
a good approximation to symmetry can be assumed.
Note that generally the weights are different at dif-
ferent x scores.

Equating extreme scores. Equating at both ends
of the score range is problematic for nearly all equat-
ing methods. This is also a problem in the quadratic
method. In implementing the postsmoothing method,
Kolen (1984) excluded the upper .5% and the lower
.5% of the data in computing the postsmoothing func-
tion and used two straight lines to link the ends of
the equating function to the two unequated end
scores. This method was also used here.

Method and Data

Model Fit

Like the linear equating method, the quadratic
equating method (QEM) makes an assumption about
the true population equating relationship. The as-
sumption underlying the QEM states that the true
population equating relationship is quadratic in
form. This assumption also implies that after equat-
ing using the QEM, all the population central mo-
ments of the equated scores of Form X will be the
same as those of Form Y. This assumption provides
two approaches for examining whether the model
fits actual testing data.

One approach is to visually evaluate whether
equipercentile equatings (unsmoothed or smoothed)
based on real testing data conform to a quadratic
form. Even though population score distributions
are almost never available in practice, sample dis-
tributions (especially large sample distributions) can
provide valuable information about model fit. In
this study, five different equating methods were
applied and plotted for each pair of test forms for
visual examination: the unsmoothed equipercentile
equating method, the postsmoothing method with

smoothing parameter s = .2, the postsmoothing
method with smoothing parameter s = .5 (the
smoothing parameters controls the deviation from
the unsmoothed function to the smoothed function;
see Kolen, 1984, for a detailed description), the QElvl,
and the linear equating method.

The other approach is to evaluate whether higher
central moments (higher than the third moment)
after equating also become closer to those of the
other test form. Because the fifth or higher central
moments of a score distribution have not been de-

fined, only the fourth central moment (kurtosis) was
examined here. Kurtosis differences between Form
X and Y before and after equating were computed
and compared. If the assumption of the QEM is met,
the kurtosis of the equated X scores would be ex-
pected to be close to that of the Y scores within the
limit of sampling error. Under normality, the sam-
pling variance of kurtosis equals 24/N where N is
sample size (see Kendall & Stuart, 1977, p. 258).
The extent to which the model fits the data can be

partially assessed by comparing the kurtosis differ-
ence after equating and the sampling SD of abso-
lute kurtosis differences.

Datasets

The first two pairs of test score distributions used
for examining model fit were the same as the first
two pairs used in Hanson et al. (1991). The first
pair consisted of two 30-item subsets from a pro-
fessional licensure exam. The second pair consisted
of two 20-item subsets of two forms of the ACT
Assessment Program (AAP) Reading subtest. Each
of these two datasets had very large Ns (over 38,000
and 82,000 respectively). Thus, the unsmoothed
equipercentile equating relationship can be used to
approximate the population equating relationship.

Data from an operational equating of the AAP also
were used. These data contained score distributions
for seven test forms (Form A to Form G) for each of
the four tests: English (75 items), Mathematics (60
items), Reading (40 items), and Science (40 items).
For each test, seven pairs of distributions were used
for equating (Form A was equated to Form B, Form
B to Form C ... Form G to Form A). Sample sizes
for all equatings are shown in Table 1.
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Evaluating Equating Error By Simulation

There are two types of equating errors: random
equating error and systematic equating error (see
Kolen & Brennan, 1995, for a discussion). Random
equating error (indexed by the standard error of
equating) is present because sample data are used to
estimate population parameters for equating. System-
atic equating error (indexed by bias) can be caused
by either model misfit of the equating method (i.e.,
the assumption underlying the method is violated)
or by the sampling process (e.g., erroneous sample
data or bias embedded in the sampling statistics used
to estimate the equating relation). Because the QEM
uses aggregate statistics, like the linear method, it
was hypothesized that the QEM would have smaller
standard errors (SES) than the unsmoothed equiper-
centile method or even the smoothed equipercentile
methods. It was further hypothesized that the QEM
would have smaller bias (in magnitude) than the
smoothing methods when the model assumptions
were met.

Computer simulation techniques (the parametric
bootstrapping method; Efron, 1982) were used to
assess the sampling error of the QEM and to compare
it to the unsmoothed equipercentile method, the lin-
ear method, and the postsmoothing method. With this
parametric bootstrapping method, the population
score distributions were assumed to be known so that
the true equating relationships were also known. Test
scores were randomly generated by computer from
such populations according to the test score prob-
ability distributions, and then various equatings were
performed based on the sample distributions and were
evaluated against the true equating relationship. More
specifically, the simulation in this study took the fol-
lowing steps.

Step l. A pair of population distributions was
defined using either smoothed sample distributions
or very large sample distributions. Three types of
population distributions were used in this study.
The first type was two pairs of observed distribu-
tions with very large Ns. They were the 30-item
licensure exam subtests and the 20-item Reading
subtests described previously. These observed dis-
tributions were taken directly as the population

score (probability) distributions.
The second and third types were the results of

smoothing AAP score distributions using a loglinear
smoothing method (Hanson, 1992; Holland &

Thayer, 1987; Kolen, 1991; Livingston, 1993). The
second type was intended to represent situations in
which the equipercentile equatings with smoothed
score distributions were close to the quadratic func-
tion. The third type was intended to represent situa-
tions in which the equipercentile equatings with
smoothed score distributions were not close to the

quadratic function. The third type was used also to
assess the robustness of the QEM to model violation.

From initial examination of the equating func-
tions from different methods, English Form A and
Form B, and Science Form G and Form A were
selected to represent the second type; Reading Form
A and Form B were selected to represent the third

type. Pearson x2 statistics for model fit were exam-
ined to determine the degree of the loglinear model.
The selected degree of the loglinear model is the
one for which an increase of one more degree does
not bring a significant decrease in the X2 value with
one degree of freedom. Five pairs of population
distributions were used for simulating data.

Step 2. Three different Ns were used to repre-
sent small, medium, and large samples. For the long
test (75 items) N = 500, 2,000, and 3,000; for short
tests of 20, 30, and 40 items, N = 250, 500, and
2,000. The sample sizes were different for long and
short tests so that frequencies at each score point
would be similar. Test scores were computer gen-
erated from the population distributions, and
equatings with various methods were performed
based on the sample score distributions. To gener-
ate a test score based on a score probability distri-
bution, a random number from the uniform [0,1 ]
distribution was generated, and this number was
compared to the cumulative score distribution. If
the uniform number fell between the cumulative
distribution values at score x and x + 1, then a score
of x + 1 was assigned to this simulee. After a pair
of test score samples was generated, the equating
functions were computed based on five equating
methods: the QEM, the linear method, the unsmoothed
equipercentile method, the postsmoothing method
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with smoothing parameter s = .2, and the post-
smoothing method with s = .5.

Step 3. The second step was repeated n = 200
times and evaluative indexes were computed. The
true population equating function that was used to
compute these indexes was defined as the equiper-
centile equating function based on the population
score distributions.

Evaluative Indexes

The evaluative indexes were bias, SE, and root
mean squared error (RMSE). These indexes were
evaluated conditionally at all number-correct score
points and averaged across the entire score scale. The
conditional indexes are defined as follows.

For any score x on Form X, denote e(x) as the
true (or population) equated score and ~,(x) as the
equated score based on sample s with any particular
equating method. The mean equated score based on
n samples is

The estimated bias is

The estimated SE is

The estimated RMSE is

11

These conditional indexes then were averaged
across the entire score scale using the Form X popu-
lation score frequencies as the weights. This
weighted average was computed as

where k is the number of score points. To compute
the average bias, the absolute value of the bias was
used because otherwise positive and negative values

could cancel. Using the score distribution P(X = x)
as the weights is equivalent to using an unweighted
average over all the examinees in the population.

Hanson et al. (1991) showed that presmoothing
and postsmoothing yielded comparable results in
terms of mean squared error. Thus, only postsmooth-
ing was used to represent smoothed equipercentile
methods.

Results

Model Fit

The model fit of the QEM was assessed based on

the 30 pairs of real test data. For each pair of test
data, the new form was equated to the old form us-
ing the QEM. The mean, SD, skewness, and kurtosis
were computed for both the original (before equat-
ing) scores and equated (after equating) scores.

Table 1 contains the before and after equating
central moments and Ns for all the test data. (For
each of the four AAP tests, Form A was equated to
Form B, Form B to Form C ... Form G to Form A.
Thus, &dquo;Form A after&dquo; should be compared to &dquo;Form
B before,&dquo; &dquo;Form B after&dquo; should be compared to
&dquo;Form C before,&dquo; and so on.) Ideally, the first three
central moments of the new form after equating
should be the same as those of the old form; how-
ever, because of the adjustment to achieve symme-
try, they were not exactly the same, although the
differences were quite small, especially for the mean
and SD. For example, in Table 1, the AAP English
Form A had SD = 12.753 and skewness = -.320
after equating, which were different from but close
to the SD and skewness of Form B after equating
(12.755 and -.322).

Examination of the kurtosis differences revealed
that for 25 out of the 30 equatings, the kurtosis dif-
ferences were smaller after equating than before
equating. The five exceptions were for AAP Read-
ing-Form B before, Form D before, and Form F
before-and for AAP Science-Form D before and
Form F before. This result suggests that the QEM
tends to pull the kurtosis of the two forms closer.
The kurtosis difference after equating can also be
compared to the kurtosis difference of two randomly
drawn samples from the same population distribu-
tion. Based on Kendall & Stuart (1977, p. 258), un-
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Table 1, continued

Descriptive Statistics for Observed Data Before and After Quadratic Curve Equating

der normality the SE of kurtosis of randomly drawn
samples of N = 2,900 scores is .091. The SE for the
kurtosis difference for two independent samples of
N = 2,900 is thus approximately . 129. Based on the
results in Table 1, for the 28 equatings performed
on the AAP data, the average absolute kurtosis dif-
ference before equating was .163. The average ab-
solute kurtosis difference after equating was .097,
which is smaller than the SE of the sample kurtosis
difference. 20 of 28 absolute kurtosis differences
after equating were smaller than. 129. These results
suggest that the QEM fit most of the AAP operational
equating datasets reasonably well.

Figure 1 shows the equating functions for the
two sets of very large sample data. The vertical
axis of these plots represents the equating func-
tion minus the identity function (i.e., the differ-
ence between the equated scores and the original
scores). Here, the unsmoothed equipercentile
equatings can be used to approximate population
equatings due to the large Ns. Because the
unsmoothed functions were already very smooth,
it is not surprising that the postsmoothing func-
tions were close to them. The QEM appeared to fit
the two population equatings quite well. The maxi-

mum biases were within .2 score points. Table 1

also shows that the kurtosis differences were re-
duced by approximately half after equating in both
cases. For example, the kurtosis differences for the
licensure subtest were reduced from .265 to .117.

Figures 2a and 2b show five different equating
functions for two AAP operational forms. In Fig-
ure 2a (English Form A to Form B), the unsmooth-
ed equipercentile equating is close to a quadratic
form. Figure 2b (Reading Form A to Form B) is a
typical case in which the unsmoothed equipercent-
ile equating is quite different from a quadratic
form. Here the unsmoothed equipercentile equat-
ing function displays an S shape rather than a qua-
dratic form. [Wang & Kolen (1994) provide a full
set of plots of equating functions for the AAP opera-
tional data. In most of those plots, the unsmoothed
equipercentile equating curve fluctuated around a
quadratic curve as in Figure 1 and in Figure 2a.]
In both Figures 1 and 2, sometimes the equating
curves display a V shape at extreme scores. This
was due to the exclusion of the .5% of data at the
two ends of the score scale. A straight line was
used to connect the two ends of the curves to the
end points.
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Sampling Error

As described previously, three types of popula-
tion distributions were used to generate data to study
the sampling errors of the equating methods: (1)
large-sample data directly taken as population dis-
tributions, (2) smoothed distributions in which the
quadratic function fit well, and (3) smoothed dis-
tributions in which the quadratic function fit poorly.
Figure 1 shows the first type of population (true)
equating functions, whereas Figure 3 provides the
second and third types of population equating func-
tions. Figures 3a (English Form A to B) and 3b (Sci-
ence Form G to A) represent two pairs of population
distributions of the second type, whereas Figure 3c
(Reading Form A to B) represents a pair of popula-
tion distributions of the third type. From these fig-
ures, the bias of each of the equating methods can
be observed based on the discrepancy of each equat-
ing function from the true population equating func-
tion (the solid curve). For example, in Figure 3a, at
score point 30, the biases of all methods except the
linear method are close to 0; at score point 45, all
the methods show negative biases and the bias of
the QEM is between post-smoothing .2 and post-
smoothing .5. The bias of the linear method is very
large except at two points (32 and 60).
RMSE for the equating methods based on four

of the five pairs of population distributions are plot-
ted in Figures 4-7. For the first and the third types
of populations, only one N was used to exemplify
the performance of the QEM (Figures 4 and 7); for
the second type of populations, a full set of plots is
provided (Figures 5 and 6).

Figure 4 illustrates that, for the licensure test,
the QEM performed better than the other methods
for much of the score scale for N = 2,000. In this
case, linear equating had a remarkably small RMSE,
especially when Ns were small. This result is prob-
ably due to the small differences between the forms
of the licensure exams.

Figures 5 and 6 show RMSE plots for situations
in which the quadratic function apparently fit the
population equating relationship well. For these two
cases, both the smoothing methods and the QEM
gave improved results over the unsmoothed equiper-

centile methods. The amount of improvement of
postsmoothing methods is consistent with the re-
sults in Hanson et al. (1991). In these two cases,
the QEM tended to perform better than all other
methods regardless of N. But the better performance
was more consistent along the score scale for small
samples than for large samples. In both Figures 5
and 6, the RMSE of the linear method displays large
fluctuations. These bumps were apparently due to
large bias of the linear method at some score ranges
(which can be seen in Figure 3). The score points at
which the linear method has a small RMSE corre-

spond to the score points that the linear equating
line intercepted with the true population equating
curve. Likewise, the RMSE of the QEM also displayed
some bumps at extreme score levels, which were
also due to relatively large bias in those score ranges.

Figure 7 illustrates the performance of different
methods for a situation in which the population
equating relationship did not fit a quadratic func-
tion. Note that all methods except the unsmoothed

equipercentile method fluctuate along the score
scale. Comparison to Figure 2 indicates that these
fluctuations were due to the fluctuations of bias.

Apparently, under this situation, there is no advan-
tage to using the QEM over using the unsmoothed
equipercentile method. Interestingly, at N= 500 the
linear method had the smallest RMSE in the middle
score range. The smoothing methods also were not
better than the linear method.

Comparison of Figures 4-7 to Figures 1 and 3
shows that the performance of the QEM depended
largely on the magnitude of its bias. At score ranges
in which the bias of the QEM was small, it typically
had a smaller RMSE than the smoothing methods,
and vice versa.

In general, these figures also show that the linear
method tended to be a viable method when N was

very small. When N was very large, postsmoothing
with a small smoothing parameter (or in some cases
even the unsmoothed equipercentile method) tended
to be a good selection.

Table 2 contains the average values of absolute
bias (AB), SE, and RMSE weighted by the Form X
score population frequencies for all five pairs of
population distributions. For the first and second
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Figure 4
RMSE of Equating Methods for the Licensure Test (N = 2,000)

types of populations (large sample and model fits
well), all the SEs were much larger in magnitude
than the AB, except for the linear method. Thus,
RMSE values were mainly attributed to SEs. Based
on RMSE values, Table 2 shows that for the large-
sample populations, the QEM had slightly better
average performance than the smoothing methods
for the licensure subtest with N = 500 or larger, but
had slightly poorer average performance for the
other cases. For instance, for the licensure subtest
with N = 500, the RMSE for QEM was .265, com-
pared to .267 and .269 for the smoothing methods.
For the AAP Reading subtest with N = 500, the RMSE
for QEM was .266, compared to .259 and .250 for
the smoothing methods.

Table 2 also shows that for the &dquo;model fits well&dquo;

populations with small and medium N(N= 500 and
N = 2,000 for AAP English; N = 250 and N = 500
for AAP Science), the QEM had smaller RMSE than
the smoothing methods. For example, for AAP Sci-
ence with N = 500, the RMSE for the QEM was .530,
compared to .547 and .579 for the smoothing meth-
ods. With large sample N (N = 3,000 for AAP En-
glish and N = 2,000 for AAP Science), however, the

RMSE of the QEM was very similar to that of the

smoothing methods.
Table 2 shows that for the &dquo;model fits poorly&dquo;

populations, the QEM had larger average RMSE than
the smoothing methods, which was attributed to
larger bias. For example, for the AAP Reading test
with N = 2,000, the RMSE of QEM was .472, com-

pared to .335 and .374 for the smoothing methods,
and this larger RMSE was attributed to the larger AB
of QEM (.339 vs..102 or .192). Postsmoothing with
larger smoothing parameters produced a larger bias
but a smaller SE than that with smaller smoothing
parameters. For example, for the AAP Reading test
with N = 2,000, the AB for postsmoothing .2 was
.102, compared to .192 for postsmoothing .5,
whereas the SE for postsmoothing .2 was .314, com-
pared to .308 for postsmoothing .5. In almost all
the cases, linear methods always had smaller SES.

Discussion and Conclusions

The results of this study show that with a ran-
dom-groups design, most of the population equating
relationships can be approximated by a quadratic
function. When a quadratic curve was fit to equate
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Figure 7
RMSE of Equating Methods for the AAP

Reading Test (Form A to Form B) (N = 500)

the first three central moments, the fourth-order cen-
tral moment (kurtosis) was also equated to some ex-
tent in most of the equating data examined. The
simulation results show that to the extent the qua-
dratic function fit the population equating function,
the quadratic equating method not only showed clear
improvement over the linear method and the un-
smoothed equipercentile method, but sometimes
showed improvement over the postsmoothing meth-
ods studied here. The results also show that when N is

very small (N= 250 or smaller), the simple linear method
provided the best results; when N is very large (2,000
or larger), postsmoothing with a small smoothing pa-
rameter (such as .2) is probably a good choice.

In searching for an appropriate polynomial func-
tion to model the equating relationship, adding one
cubic term to the quadratic function was considered
so that kurtosis also could be equated. However,
doing so was found to be undesirable for two rea-
sons. First, it makes the computations much more
complicated. Second, sample kurtosis has much more
random error than skewness. The variance of sample
kurtosis for normal distributions is four times that of

sample skewness (see Kendall & Stuart, 1977, p.

258). Higher-order polynomial functions might be
investigated in the future if these issues can be prop-
erly resolved. The quadratic function could be stud-
ied as the first step in this direction.

Linear and equipercentile equating both have ad-
vantages and limitations. Smoothing methods are
aimed at reducing the random error of the equiper-
centile methods, but they usually involve complicated
mathematical manipulation and computer program-
ming. They also often require subjective judgment
about model parameters. The quadratic equating
method proposed in this paper provides another ap-
proach to reducing random error as well as bias. Both
the idea and computations are simple, and implemen-
tation of the quadratic method does not require sub-
jective judgment.

The results based on the real test data showed
that the quadratic method fit most, but not all, of
the test data. When the population equating rela-
tionship was close to quadratic in form, this method
usually displayed smaller random error and bias
than other equating methods for Ns in a range of
about 250 to 2,000. For N = 250 or smaller, simpler
methods such as linear equating show advantages.
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Table 2

Average Values of Absolute Bias (AB), Standard Error (SE), and Root Mean Squared Error (RMSE) for
Three Population Distribution Types (Large Sample, Model Fits Well, and Model Fits Poorly)

- -------- - --- - - . - . - - - .. - . - - - - -- .. -- - . - - .. - - - - - - - - ,_ , .

eFor the AAP English Test (Form A to B) and the Model Fits Well population distribution, the sample sizes were
N = 500, N = 2,000, and N = 3,000.

For N = 2,000 or larger, more sophisticated meth-
ods such as post-smoothing show advantages. In
other cases, the more sophisticated methods dis-
played smaller random error and bias. Procedures
need to be derived to judge whether or not the qua-
dratic method adequately fits the population based
on sample data. An examination of the

equipercentile equating relationship and the kurto-
sis difference before and after the quadratic equat-

ing might be helpful if this procedure is to be used
in practice.
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