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Selection of Unidimensional Scales From a
Multidimensional Item Bank in the Polytomous
Mokken I RT Model

Bas T. Hemker and Klaas Sijtsma, Utrecht University
Ivo W. Molenaar, University of Groningen

An automated item selection procedure for selecting
unidimensional scales of polytomous items from multi-
dimensional datasets is developed for use in the context
of the Mokken item response theory model of monotone
homogeneity (Mokken & Lewis, 1982). The selection
procedure is directly based on the selection procedure
proposed by Mokken (1971, p. 187) and relies heavily
on the scalability coefficient H (Loevinger, 1948;
Molenaar, 1991). New theoretical results relating the
latent model structure to H are provided. The item selec-

tion procedure requires selection of a lower bound
for H. A simulation study determined ranges of H for
which the unidimensional item sets were retrieved from
multidimensional datasets. If multidimensionality is
suspected in an empirical dataset, well-chosen lower
bound values can be used effectively to detect the unidi-
mensional scales. Index terms: item response theory,
Mokken model, multidimensional item banks, nonpara-
metric item response models, scalability coefficient H,
test construction, unidimensional scales.

Multidimensionality manifests itself in different ways in test construction research. For example, for test
batteries that address complex multidimensional constructs, such as intelligence, subsets of items can be
constructed for each relevant aspect of the construct. Data obtained from these test batteries are multidimen-
sional by construction. However, subsets of items for subtests in such a test battery are intended to be unidi-
mensional.

When constructing a test for a unidimensional construct, multidimensionality in a dataset may be intra
duced in several ways. For example, due to an unfortunate phrasing a few items may measure other traits than
the majority of the items. Another example is that the test constructor intended the test to include a number of
different substantive areas, but was not aware of the resultant multidimensionality that was introduced.

Many methods have been used to identify unidimensional item sets from larger item banks (e.g., explor-
atory factor analysis and cluster analysis). Another approach to analyzing multidimensionality is to use
multidimensional item response theory (IRT) models (e.g., Batley & Boss, 1993; Reckase & McKinley,
1991). Rather than selecting items into subsets, that approach describes the latent structure by means of
item parameters and a person parameter for each latent trait.
An iterative method for selecting unidimensional scales from a multidimensional item bank is investigated

here. This method is subsumed under the Mokken (1971; Mokken & Lewis, 1982) nonparametric IRT ap-
proach to scaling. The item selection procedure selects from an item bank items that approximately satisfy the
requirements of the Mokken IRT model of monotone homogeneity. After one set of items that forms a scale
has been selected, the item selection procedure attempts to find the next scale from the subset of unselected
items, and so on, until there are no more items left that can form a monotonely homogeneous scale.

Compared with factor analysis and related methods, a definite advantage of this item selection procedure
is that items are selected on the basis of their fit to a particular IRT model. Compared with multidimensional
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IRT models, the advantage may be that the interpretation of test performance on the basis of scores obtained
on unidimensional tests is relatively straightforward.

The Mokken Approach to Scaling
Assumptions and Definitions

In IRT models, the probability of a particular response to an item is a function of characteristics of the
person and the item. For dichotomous items, this relationship is expressed by the item response function
(IRF). Nonparametric IRT models (e.g., Junker, 1993; Mokken, 1971; Mokken & Lewis, 1982; Rosenbaum,
1987; Stout, 1990) do not assume a parametric definition of the IRFS or of the latent trait (0) distribution
across people. These models thus are based on weaker assumptions than most parametric IRT models. As a
result, nonparametric models yield only ordinal measurement, whereas parametric models provide interval
measurement. However, nonparametric models often fit empirical data better than parametric models (Meijer,
Sijtsma, & Smid, 1990; Mokken & Lewis, 1982; Molenaar, in press). Meijer et al. (1990) and de Gruijter
(1993) provided a comparison of some nonparametric and parametric IRT models.

This study used the nonparametric Mokken IRT model for polytomous items (Molenaar, 1982, 1986, in
press). Let X, denote the random variable for the score on item i (i = 1, ..., k) with m + 1 ordered answer
categories. A given item score is denotedX, =x,, wherex, = 0, ..., m. An item step is the imaginary threshold
between two adjacent ordered answer categories. Each item with m + 1 categories is assumed to be based
on m hypothetical dichotomous item steps indexed by s = 1,..., m. Going from a lower to a higher response
category yields 1 point; otherwise a score of 0 is assigned. Within one item, an item step cannot be passed
if an earlier item step has not been passed. A 0 step score thus implies 0 step scores on the next steps of the
same item, and a step score of 1 implies scores of 1 on preceding steps.

Item step scores are denoted by Y,S. The relationship between X, and Y,,, is

The probability of successfully taking step s of item i is written as P(YS = 110), which is equivalent to
P(X, _> ~j8); the notation 7t,s(9) also is used. This conditional probability is the item step response function
(ISRF). For dichotomous items, m = 1 and the ISRF is identical to the IRF.

The Mokken model of monotone homogeneity is defined by three assumptions: (1) unidimensionality,
which means that all items measure the same trait; (2) local stochastic independence, which implies that for
fixed 0 the covariance between item scores X, and X~ (i = 1, ..., k; j = 1, ..., k; i ~ j) is 0; and (3) monoton-
icity in 0, which means that for every item i the following proposition is true: Let person A and person B have
latent trait values 9 A and OB with 9A < OBI then

for all pairs of different latent trait values, which means that the ISRFs are nondecreasing. A similar in-
equality also holds for the total score X on k polytomous items with m answer categories each. Note that
P(¥’s = 1[0) = E(Y,s~9). Summation across km item steps would yield:

or, equivalently,
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and

Note that this result also holds if m varies across items.

Relationship With Other Models

Analogous to Mokken’s ( 1971 ) approach to dichotomous items, a more restrictive model than the model
of monotone homogeneity can be formulated for polytomous items. This more restrictive model can be
designated the model of double monotonicity for polytomous items (e.g., Molenaar, in press). This model
is based on the model of monotone homogeneity and, in addition, requires that the IsRfs of different items
do not intersect (Mokken & Lewis, 1982; Molenaar, in press). Thus, the model of double monotonicity is
nested in the model of monotone homogeneity (Molenaar, 1986, in press). The model of monotone homo-
geneity suffices for many applications.

The model of monotone homogeneity for polytomous items is a nonparametric version of the graded
response model (Masters, 1982; Samejima, 1969). This is obvious from the following line of reasoning.
Let a, denote the item discrimination parameter, and let Â-,s denote the category boundary parameter of step
s of item i. Then, according to the graded response model,

The category boundary parameter X~ can be written as the sum of the difficulty of item i, 8,, and the
difficulty of step s of item i, with

and

The probability of the item score X, = x,, P(X, = X, 19), can be obtained from these ISRFS. If X, = s then

with P(Y,,m+1 = 110) = 0 and P(Y,o = 119) = 1. Note that the formulation of item steps in the nonparametric
model of monotone homogeneity for polytomous items implies the same relation between probabilities of
item scores and probabilities of item step scores.

Observable Consequences

If the model of monotone homogeneity holds for dichotomous items, the covariance o between items
i and j is non-negative (Mokken, 1971, pp. 120, 131; see also Ellis & van den Wollenberg, 1993; Mokken
& Lewis, 1982). This result also holds for polytomous items.

Theorem. If monotone homogeneity holds, then a(X,, Xj) ~! 0; X,, A= 0, 1, ..., m; i ~ j.
Proof. Assume a doubly stochastic process. First, Os are randomly sampled from the population distri-
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bution. Second, given this sample, for each 0, replications of X, and £ are randomly sampled from the
propensity distributions (Lord & Novick, 1968, p. 30) of the sampled persons. The covariance between
X, and £ is

Because of local stochastic independence, the second term on the right equals 0. Next, note that
because

and E(Y,.,10) = 7~(8), if the item steps of item i are indexed by s and those of item j by t, the first term
on the right can be written as

Thus, from Equations 10 and 12 it follows that

Next, note that by assumption, 1t1S(S) and 1t/S) are monotonically nondecreasing functions of 0. Thus,
these functions are similarly ordered functions (Mokken, 1971, p. 119). Mokken (p. 120, corollary
1.1.1 ) proved that the values of similarly ordered functions have a nonnegative covariance. Therefore,
aey,~(9),n,r(9)] >_ 0; thus, a(X,, X~) >_ 0 follows.

Scalability
In the item selection procedure based on the model of monotone homogeneity, the scalability coefficient

H (Loevinger, 1948; Molenaar, 1991 ) plays an important role. Given the number of items and the model of
monotone homogeneity, the larger the value of H, the more accurately persons can be ordered. The property
of non-negative values of alJ is fundamental for H in the context of the monotone homogeneity model.

From the covariance o and the maximum covariance a’j(max) given the marginals of the bivariate cross-
tabulation of the scores on items i and j, H for these items is defined as

[for dichotomous items refer to Mokken ( 1971 ) and Mokken & Lewis (1982); for polytomous items refer
to Molenaar (1991)].

7~ also can be defined as a decreasing function of the proportion of weighted Guttman (1950) errors,
given that item step difficulties are fixed (Hemker & Sijtsma, 1993; Molenaar, 1991).

The extension of H,, to the scalability coefficient H for k items is

The extension to coefficient H,, which indicates whether item i is scalable in accordance with the monotone
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homogeneity model given the other items used, is

It can be shown that min(H,,) :5 min(~,) ~ H < max(H,) <_ max(H,). The proof of these inequalities is
analogous to the proof for dichotomous items (Mokken, 1971, p. 152).

The null hypothesis that Hj = 0, H, = 0, or H = 0 against the alternative that H,,, H,, or H is positive can
be tested for dichotomous items (Mokken, 1971, pp. 157-169) and polytomous items (e.g., Molenaar, in
press; Molenaar, Debets, Sijtsma, & Hemker, 1994). In both cases, a test statistic z is used that is asymp-
totically standard normal. Because this test statistic was not used in this study, the technical details are not
discussed here.

The maximum value of H is 1, which is obtained if all item pairs have maximum covariances. If the
monotone homogeneity model holds, the minimum value for a,~ is 0 and, consequently, the minimum value
for H,,, H,, and H is also 0. Thus, a necessary condition for the monotone homogeneity model is 0 < HJ:5 1
for all item pairs. Therefore, H, and H also range from 0 to 1, given that the monotone homogeneity model
holds. Note that if ati < 0 then H,, < 0, which contradicts the model.

Given the theorem, and the definition of H for polytomous items, the next corollary is obtained easily.
Corollary. For a set of k polytomous items satisfying monotone homogeneity 0 <_ H <_ 1 with equality
to 0 if and only if at least for k - 1 items the ISRFs are constant functions of 0.

Equation 17 shows that if all items have constant IsRfs [i.e., if 7~(6) = 1t,S and if 1t/a) = 1tJt for all 0],
then all covariances between ISRFs are 0. This is also true if one item has one or more monotonically
nondecreasing ISRFS, because Equation 17 pertains to ISRFs of different items. Thus, from Equation
13 it then follows that (JIJ = 0 for all item pairs (i # j). Next, from Equation 15 it follows that, given
the monotone homogeneity model, H = 0 if at least k - 1 items have constant ISItFs.
Proof of sufficiency. H = 0 implies that the sum of all covariances in its numerator (see Equation 1 S)
equals 0. Applying the theorem, this sum thus contains no negative covariances. Therefore, H = 0
only if all covariances equal 0, which means that o = 0 for all item pairs (i, j). The theorem shows
that this means that all ae[n,s(9),n,~(e)] = 0 for i ~ j. Given the model of monotone homogeneity, the
Isis are either monotonically nondecreasing or constant. If at least one of two IsRfs is a constant
function of 0, the covariance between these ISRFs is 0. Otherwise, given the monotone homogeneity
model, this covariance is positive due to similarly orderedness (Mokken, 1971, p. 120, corollary
1.1.1 ). Thus, given the monotone homogeneity model and H = 0, at most one item can have one or
more monotonically increasing ISRFs.

Because a positive H is not a sufficient condition for the monotone homogeneity model, and because
low positive H values do not lead to useful scales allowing an accurate ordering of persons, Mokken ( 1971,
p. 184) suggested the lower bound of H= .30 for practical use with dichotomous items. Scales with smaller
H do not yield a satisfactory discrimination among persons. For the interpretation of the other values of H,
Mokken (1971, p. 185) suggested the following guidelines:

.30 <_ H < .40: items form a weak scale;

.40 <_ H < .50: items form a medium scale;

.50 <_ H <_ 1.00: items form a strong scale.
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The stronger the scale, the more accurately persons can be ordered. Hemker & Sijtsma (1993) con-
cluded that these general rules also can be used for polytomous items because the number of answer
categories has no substantial effect on H.

The use of these general rules thus prevents outcomes of item selection that are in agreement with the
monotone homogeneity model but useless for practical purposes. An excellent example was given by
Wood (1978) who found that data generated by coin flipping were in agreement with the Rasch model,
which is a special case of the monotone homogeneity model for dichotomous items. Obviously, coin flip-
ping represents an extreme case of both models in which all ISRFS are constant functions of 0 and the total
score has zero reliability. A lower bound for H forces the selection of items with at least moderate discrimi-
nations or reliability (Meijer, Sijtsma, & Molenaar, 1995). Note that this lower bound and the general rules
are part of the scaling procedure, not of the model.

For dichotomous items, coefficient H is sensitive to the interplay of three other factors (Mokken, Lewis, &
Sijtsma, 1986): the population variance, the slopes of the ISRFs (discriminations), and the spread of the item
locations (difficulties). Holding constant two of these factors, H is an increasing function in the third factor.
The same reasoning holds for polytomous items.

When the population variance is 0, there is no relevant information available regarding nontrivial mono-
tone homogeneity of the item set. As a result, H = 0. As the population variance increases, holding constant
the other two factors, more information is available about the ISRFs and, therefore, if the monotone homo-

geneity model holds, H will be larger.
In the boundary case of the monotone homogeneity model with smallest possible slopes (i.e., slopes

equal to 0), all mk ISRFs are constant functions of 0, which results in H = 0 (see corollary). Increasing the
slopes, while holding the other two factors constant, increases H. Maximum positive slopes yield ISRFs in
agreement with the Guttman (1944) model; therefore, H = 1.

If the distance between all ISRFS is 0, the H value is a function of the population variance and the slopes.
However, for positive, fixed slopes and given nonzero population variance, an increase of the distances
between the ISRFs yields an increase of H. This is a result of the increase of the 0 range over which the
items have the potential of providing relevant information regarding monotone homogeneity.

Item Selection Procedure

Automated Item Selection

The bottom-up item selection procedure selects items from the initial set into scales that satisfy the require-
ments of the monotone homogeneity model. The lower bound c is specified by the researcher: H = c > 0.

First, from the item pairs for which H,~ >_ c, the pair is selected that has the highest HI) value that also is
significantly larger than 0. Significance is evaluated using the test statistic z (Molenaar et al., 1994). If none
of the H,~s satisfies these requirements, no scale can be formed. In each consecutive step an item f is selected
and added to the already selected item set; the item selected (1) has a positive covariance with each of the
already selected items; (2) has an Hfvalue with respect to the already selected items which is at least c; and (3)
maximizes the common H coefficient of the already selected items together with item f across all possible
choices from the remaining items. The selection of items for the first scale stops if all items have been selected
or if none of the remaining items satisfies each of the conditions for selection into a scale. Because at each
stage of the item selection process a large number of significance tests is performed, a progressive Bonferroni
correction protects against chance capitalization across the selection steps.

Next, if possible, the item selection procedure selects items from the remaining items into a second scale
using the same selection criteria. If there are items remaining, the procedure continues to select items into a
third scale, and so on, until there are no more items remaining or until the items that remain do not satisfy the
conditions for inclusion into a scale. The same test statistic z and the same Bonferroni correction are used
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throughout the item selection procedure.

Factors That Affect Item Selection

Obviously, factors that influence H affect the outcome of the item selection procedure. The sensitivity
of the selection procedure to the variance of the person parameter 0, while holding the Bs and as constant,
was investigated for simulated unidimensional dichotomous data (Sijtsma & Prins, 1986). The two-param-
eter logistic model (Birnbaum, 1968) and a normal 0 distribution were used to generate the data. All items
were selected into one scale for all cases under consideration. When the variance of 0 increased, the H
value of the total scale increased. The H value of the scale decreased during the selection of the first 5
items, but did not decrease much more with the selection of more items.

If relatively weakly discriminating items were added to the item bank, these items were selected last.
Their selection led to a sharp decrease in H. The 8s of these items had no effect on this result. If one
relatively strongly discriminating item was added to the item bank, this item was one of the two items
selected first regardless of its 8.

For unidimensional polytomous data, Hemker & Sijtsma (1993) demonstrated that the result of the item
selection procedure is hardly influenced by the number of answer categories. It is unknown, however, how
multidimensionality of the data affects the outcome of the item selection. Suppose that in a test measuring
d latent traits, each item measures only one trait. Different traits can have nonzero correlation, however.
The desired result would be that (1) all items measuring the same trait are selected into one scale, and (2)
items measuring different traits are selected into different scales. However, characteristics of the joint
distribution of the d latent trait values Op 6~, ..., 9d, the as of the items, and the spread of the item step
difficulties will have an effect on the accuracy of the outcome. For example, holding everything else
constant, the smaller the correlation between traits, the more items will be classified correctly into unidi-
mensional scales. This will also depend on the lower bound c selected by the researcher. Note, however,
that for a correlation larger than 0, items indirectly measure more than one trait: the trait for which the item
was originally designed and the other trait(s) covarying with this trait.

If the as are equal for all items in the multidimensional item bank, its effect on the outcome of the selection
procedure will be relatively straightforward (Sijtsma & Prins, 1986). However, if the as are unequal, results
for a given lower bound will be more diffuse. Items may be rejected on the basis of low a. As a result, only
relatively highly discriminating items measuring the same trait may be selected into one scale.

In this study, the correlation between traits, the mean a, and the variance of the as across items measur-
ing the same trait were varied to study their effects on the outcome of item selection. Other factors, such as
the variance of the joint person parameter distributions and the spread of the 8s, were held constant.

Lower Bound H = c and Item Selection

The composition of the scales resulting from the selection procedure will be affected by the magnitude
of the lower bound H = c. If c = 0 (the theoretically smallest lower bound given monotone homogeneity),
the items are selected into scales for which /7 ~ 0 for all item pairs and thus H > 0. Therefore, scales may
have very low H values and may be practically useless. If c = 1 (the largest lower bound), the item selection
procedure attempts to find a perfect Guttman (1944) scale and stops if none is available.

Very small lower bounds may yield one large scale that consists of items measuring different traits. Very
large lower bounds may yield scales that do not include all items measuring the same trait, or they may
yield more scales than there are traits. Between these two undesirable outcomes, a range of c values that
yields the desired result hopefully can be located. For practical purposes, this range can be extended by
allowing a suboptimal but practically acceptable outcome; for example, by requiring that (1) at least two-
thirds of the items measuring the same trait are selected into one scale; (2) items measuring different traits
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are always selected into different scales; and (3) the number of scales equals the number of traits. In this
study, the range that leads to the perfect selection from the item bank (the correct range) and the practically
acceptable ranges were determined as a function of the correlation between traits, the mean item a, and the
variance of the as across items measuring the same trait.

Because an analytic solution of the problem of finding the ranges of c values is difficult to achieve, and
given the dependence on many characteristics of the items and the joint distribution of 91, 021 ..., 9d, a
simulation study was conducted. From this study a practical strategy was formulated for the selection of c
that results in the selection of the appropriate unidimensional scales from multidimensional data.

Lower Bound Values for Detecting Unidimensional Scales

Method

For d traits the number of correlations between trait pairs is d(d - 1)/2; thus, many relationships could
be studied. Here the simplest situation (d = 2) was investigated extensively; limited results were obtained
for d = 3. From these results, it is plausible that the study of larger d will not lead to additional insights.

For the d = 2 case, the joint distribution of the latent traits 0, and 02 was standard normal. Six correla-
tions between 0, and 02 were investigated: p = 0.0, .2, .4, .6, .8, 1.0. An item bank containing 18 items was
used. Items 1 to 9 measured 01, and Items 10 to 18 measured 02, For each trait, the item numbering corre-
sponded with increasing 8 (i.e., Item 2 was more difficult than Item 1 and so forth). There were five answer
categories per item because in many practical situations five-alternative Likert items are used.

Because the Mokken model of monotone homogeneity does not parametrically define IsRfs and be-
cause a parametric definition in combination with the joint distribution of 0, and 02 is necessary to gener-
ate datasets, the graded response model (Masters, 1982; Samejima, 1969) was used (see Equation 6).

The mean (M ) a, denoted by aM, of the items measuring 0, was equal to that of the items measuring 02-
Three levels were investigated: aM = 1.0, aM = 1.5, and aM = 2.0. With a bivariate standard normal distribu-
tion, these values resulted in low, medium, and high quality items, respectively. The spread of the as within
a unidimensional item set had two levels: constant (C; no spread) and varying (V; positive spread). For the
C condition, a, = aM for all items. For Condition V, a, = aM + v, with v = -.5 for three items, v = 0 for three
other items, and v = .5 for the remaining three items. The v values were randomly distributed across the
items. The random assignment resulted in v = (0, -.5, .5, .5, 0, -.5, 0, -.5, .5) for the items measuring 91 (i
= 1, ..., 9), and v = (.5, 0, -.5, .5, -.5, .5, 0, 0, -.5) for the items measuring Az (’ = 101 ... 18). Note that in
Condition C a restrictive version of the monotone homogeneity model is obtained, which also satisfies the
model of double monotonicity for polytomous items [see Molenaar (1986, in press) for further details].
Because of the interdependence between the item a, the spread of the 8s, and the population variance, the
latter two were not included as factors in the design.

For each trait, the 9 item 8s were equidistant between -2 and 2. Thus, 8s from different subsets were
matched. The T,~s were equidistant between -1.5 and 1.5 for all items.

The result was a completely crossed 6 x 3 x 2 design, with 6 levels of correlation between the traits, 3
levels of mean a, and 2 levels of variation of the a parameters (C and V). For every cell in this design, four
replications each consisting of 2,000 simulees were generated. A sample of 2,000 simulees was assumed to
be sufficiently large to obtain stable results, and four replications were considered sufficient to evaluate
this assumption.

For d = 3, the three traits A1, 021 and 03 had a joint standard normal distribution. The three correlations
between the traits were equal: P12 = P13 = P23 = p. Analogous to d = 2, for d = 3 there were 9 items per trait.
A 6 x 3 x 2 design was investigated. For every cell in the design one dataset consisting of 2,000 simulees
was generated analogous to the situation with d = 2. Note that one dataset was used because for d = 3 the
stability results obtained for d = 2 were used.
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With two traits and 9 items per trait the correct result is obtained when two scales, each containing all 9
items measuring one particular trait, are selected. Such an outcome will be denoted [2:9,9]. The practically
acceptable result has two unidimensional scales containing at least 6 items each, but not 9 items in both,
and is denoted [2: > 6, > 6]. For d = 3 the correct result, [3: 9, 9, 9], and the practically acceptable result,
[3: >_6, >_ 6,> 6], are defined analogously. If p = 1.0 the data are unidimensional and, therefore, one unidi-
mensional scale that contains all items should be found in all cases.

The software package RSP (Mokken Scale Analysis for Polytomous Items; Molenaar et al., 1994) was
used for all calculations. RSP performs item selection using the test statistic z and the Bonferroni correction
discussed above. For this simulation study, however, this inferential framework had almost no practical
effectiveness for the following reason. Given that the model of monotone homogeneity is true, the null
hypothesis H = 0 is true if the ~s~s have zero discrimination or if 0 has zero variance. These conditions
were not represented in this simulation study. In addition, the authors’ experience has shown that the test
for H = 0 is useful if the sample size is smaller than approximately 500. In larger samples the null hypoth-
esis is almost always rejected. This is the result of large power against the null hypothesis if the monotone
homogeneity model is the true population model. Because the sample size was 2,000, the items had posi-
tive a, and 0 had positive variance, statistical testing had no effect.

Pilot Study

In a pilot study, datasets containing 400 simulees from some of the cells of the design with d = 2 were
analyzed. For example, aM = 1.5 for all 18 items (Condition C) and correlation between traits p = .4 yielded
the following item selection results.

For c = 0, one two-dimensional scale was found containing all 18 items with H = .27. For all c < .20 this

same result was found. However, for c = .20 the item selection procedure resulted in two unidimensional
scales each containing 9 items and each with H = .41. For all .20 < c < .39 this [2: 9, 9] result was found. For
c = .40 two scales also were found, but one of the scales contained 8 items instead of 9. This outcome thus

belonged to the class z! 6]. For c = .41 three scales were found: one with 8, one with 7, and one with
2 items. This result is not practically acceptable because the number of unidimensional scales is incorrect.
For values of c > .42, the item selection procedure yielded other results that were not practically accept-
able. For example, for c = .45 four small unidimensional scales were found containing 2 to 4 items. For c
= .50 only two 2-item scales were found.

Intervals of c Values

In general, it can be concluded that if c = 0 and p > 0, most or all items were selected into one scale
because the only requirement is that a (X&dquo;X) > 0 (Hj > 0) for all item pairs. If p = 0 (independent traits),
many negative sample covariances will occur between items measuring different traits and thus more than
one scale is expected to result.

If c increases starting from 0, then depending on the parameter setup of the ISRFs and p, there exists a value
of c, say cs, that is the smallest c that results in two unidimensional scales. There are two possibilities of
interest here. First, [2: 9, 9] will be found if all items measuring different traits have lower sample covariances
than items measuring the same trait. Second, if [2: 9, 9] is not found, the practically acceptable result
[2: ~t 6, ~t 6] may be found if both kinds of covariances show only small differences. The result [2: ~! 6, ~ 6] will
be found in particular if the as vary within a set of items measuring one trait. In extreme cases (e.g., p very
large), not even [2: >_ 6, >_ 6] will be found. For the pilot study, [2: 9, 9] was found with cs = .20.

If c increases further starting from cs, then two possibilities are of interest. If [2:9,9] was obtained at cs
then there exists a larger c, say c~~, that is the largest c yielding a correct result. Values larger than CLC result
in imperfect outcomes. Thus, the correct result is obtained between Cg and c,c. If [2: ~t 6, ~ 6] was obtained
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at cs, then there exists a larger c, say CLPA, which is the largest c yielding a practically acceptable result.
Values larger than cLPA result in outcomes worse than [2: >_ 6, >_ 6]. For the pilot study, this resulted in CLC =
.39 and CLPA = .40. Note that in no cell is it possible that CLPA < c~ because lower bounds larger than cLPA
cannot result in [2: 9, 9]. It is expected that the choice of c has a similar effect on item selection for d = 3.

Results

Two traits. Because cs hardly varied across replications, Table 1 shows the mean values of cs across
four replications for p < 1.0. Note that p = 1.0 represents unidimensionality; thus, Cg cannot be determined.
In most cases (exceptions marked by *) these Cg values resulted in [2: 9, ]. The value of cs increased with
increasing correlation between the two traits. For p > 0.0, cs also increased with increasing mean as within
Condition V or C. No value shown in Table 1 for a condition means that no value of c resulted in a correct
or a practically acceptable result.

Table 1
Mean cs Values for d = 2 Averaged Across 4

Replications and 5 Levels of p, With N = 2,000 for 3 Levels
of aM and With a Varying (V) or Constant (C) Over Items

For constant as (C), the selection procedure always resulted in [2: 9, 9]. Under the V condition, this
result was only found when p was small or when the mean a was large. When [2: 9, 9] was not obtained
in Condition V, the items that were not selected had relatively low as. In Condition V with aM = 1.0 and aM
= 1.5, respectively, and p = .8, two unidimensional scales also were found, but because at least one of these
scales contained fewer than 6 items Cg is not given. If a lower bound c was used that was smaller than the
cs value reported in Table 1, one scale that contained items measuring both traits was obtained.

The correlation between the traits (p) had no effect on cLPA and c,~. Furthermore, CLPA and c~ hardly varied
across replications. Therefore, Table 2 shows the mean values of C~PA and c~ across the five correlations
(omitting p = 1.0) and the four replications per cell. These means are based on observations of C~PA and c~
that had standard deviations (SDs) ranging from .0076 to .0166 across cells, with a mean SD of .0108.

The values of cLPA and cLC increased with increasing mean as. Furthermore, CLC was larger in Condition
C than in Condition V. However, CLPA was larger in Condition V than in Condition C.

If c exceeded CLPA, the results (not shown) also differed in Conditions V and C. In Condition V, two
unidimensional scales were found if c exceeded CLPA by less than .10, but at least one of these scales had fewer

Table 2
Mean c~~ and C~PA Values for d = 2 Averaged Across 4

Replications and 5 Levels of p, With N = 2,000 for 3 Levels
of aM and With a Varying (V) or Constant (C) Over Items
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than 6 items. If the lower bound c exceeded CLPA by. .10 or more, then no scales were found or the number of
items per scale was only 2 or 3.

In Condition C, the average difference between CLC and CLPA was only .01 (Table 2). As c increased
(c > cLPA ) (not shown), the number of small scales increased. For example, if for a particular c two items
measuring the same trait were not selected in a larger unidimensional scale, and these two items had a
mutual H~ value that was larger than c, this resulted in an additional scale containing these two items. A
further increase of c resulted in a decrease in the number of scales, because the lower bound c became

larger than the H,~ values.
The range of lower bounds that resulted in two distinct unidimensional scales can be inferred from the

results for cs, CLC’ and CLPA. The lower bound ranges for the different levels of p and aM are shown in Figure
1 for Condition V and in Figure 2 for Condition C. The black part of each column shows the range of lower
bounds that yielded the correct result, [2: 9, 9]; the white part of a column shows the range of lower bound
values that yielded the practically acceptable result, [2: ~! 6, ~ 6]. An asterisk (*) in Figure 1 means that

neither result was found.

The range of lower bounds increased with increasing as and with decreasing correlation between traits.
The range that resulted in two unidimensional scales was larger for varying (V) as (Figure 1), but the range
of lower bounds resulting in [2: 9, 9] was larger for constant (C) as (Figure 2).

For the special case in which p = 1.0 (unidimensionality), the correct result is obviously that all items are
selected into one scale. For Condition C this result was found between c = 0.00 and c = .21 for aM = 1.0,
between c = 0.00 and c = .39 for aM = 1.5, and between c = 0.00 and c = .53 for aM = 2.0. For larger lower
bounds, one or a few small scales consisting of two or three items were found. For much larger c, no scales
were found. For Condition V, all items were selected in one scale between c = 0.00 and c = .10 for aM = 1.0,
between c = 0.00 and c = .30 for aM = 1.5, and between c = 0.00 and c = .46 for aM = 2.0. With increasing c,
first one smaller scale was found because a number of items were rejected, next one or a few very small scales
were found and finally, no scales were found.

Three traits. The results for d = 3 closely resembled the results for d = 2. For p < 1.0, the values of c,
per cell, averaged across p, aM, and Conditions V and C were .015 larger than for d = 2, with a SD of .017.
The largest difference was .05. The values of CLC and CLPA for d = 3, averaged over p, aM, and Conditions V
and C were both .004 smaller than ford = 2, with sDs of .009 and .O 10, respectively. The largest differences
for cLC and CLPA with corresponding cL~ and CLPA values for d = 2 were -.02 and -.03, respectively. The
results for p = 1.0 with d = 3 were comparable with the results for p = 1.0 and d = 2.

Research Strategies and an Empirical Example

It is common practice to use this item selection procedure with only one lower bound value, very often
c = .3 (Mokken & Lewis, 1982). This value was proposed to obtain a sufficiently accurate ordering of
persons. However, this study has shown that there is not a unique lower bound or even a unique range of
lower bounds that will indicate whether the data are multidimensional. Such ranges vary across the par-
ticular choice of IsltFs and the joint distribution of 91, 92, ..., Ad. Thus, the use of one c value may be not
enough to decide whether an item set is multidimensional.
A relatively simple way to obtain information about the multidimensionality of the data is to implement

the item selection procedure several times, starting with c = 0.0 or c = .05. These values will reveal whether
there are scales with correlations close to 0. These scales should not be joined. Next, the item selection
procedure can be implemented for c = .30, c = .40, and c = .50.

More detailed information can be obtained by implementing the item selection procedure more often,
starting with c = 0.0 and in each consecutive step increasing c with, say .05, until c is approximately .55.
The precision of the results can be manipulated by selecting smaller or larger increases of c. Following this
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strategy means running the item selection procedure 12 times. However, for an experienced user of MSP
this will take very little time.

The results from this simulation study suggest how these strategies be used with empirical datasets. Two
cases should be distinguished: multidimensionality and unidimensionality.

The typical pattern of results with multidimensional data for varying lower bound c is that with increas-
ing c the following stages can be observed: (1) most or all items are in one scale; (2) two or more unidimen-
sional scales are formed; and (3) two or more smaller scales are formed and several items are rejected. This
study indicates that the results from the second stage be taken as final. Thus, the scales found in that stage
may be used as separate unidimensional scales.

With unidimensionality, the typical pattern of results with increasing c is: (1) most or all items are in one
scale; (2) one smaller scale is found; and (3) one or a few small scales are found and several items are
rejected. If this pattern of results is found with an empirical dataset, consider the results from the first stage
as final. For practical purposes, test length, the value of H, and the reliability of scale scores also should be
taken into consideration with either of the outcomes pertaining to unidimensionality and multidimen-
sionality. The main difference between the stages observed for multidimensionality and those for unidi-
mensionality is that for multidimensionality the scale found in Stage 1 splits into two or more scales
whereas for unidimensionality this scale mainly remains intact.

Example Application

The item selection procedure was applied to empirical data from an investigation of annoyance due to
industrial malodors (Cavalini, 1992). The questionnaire consisted of 17 four-category items administered to
828 respondents.

Factor analysis (Cavalini, 1992, pp. 53-54) revealed several solutions; however, the most interpret-
able had four factors [4: 7, 4, 3, 3]. Scale I measured a mixture of an emotional and an avoidance reaction
and contained 7 items (Items 3, 6, 8, 13-16); Scale 2 measured the rational effort to do something about
the malodor problem and contained 4 items (Items 5, 7, 9, 11); Scale 3 measured the effort to save the
laundry from the bad outside air and contained 3 items (Items 1, 2, 4); and Scale 4 measured the emo-
tional acceptance of the situation and contained 3 items (Items 10, 12, 17) (Cavalini, p. 53). The corre-
lations among the four scales ranged from -.31 to .47. Other than one high loading, each item had small
loadings on the other factors.

MSP and the methodology presented above were used in order to investigate whether a solution that had the
same interpretation could be obtained. Starting with c = 0.00, with each consecutive step c was raised by .05
until .55. Table 3 shows the predicted pattern of results, starting with most items in the same scale and ending
with a few small scales and most items rejected. For c = 0.00, 14 items were in one scale and 3 items were in
another scale. Between c = .20 and c = .40, first three and then (at c = .30) four scales were formed. The same
3 items (Items 10, 12, 17) that formed one scale for c = 0.00 constituted this scale until c = .30.

These results suggest that either three or four scales should be accepted as the end result. Here consid-
erations concerning the number of items per scale, the reliability per scale score, and the interpretation of
the meaning of the scales can be used for a final decision. Note that the solutions with three (at c = .25) and
four (e.g., at c = .35) scales both contained Scale 3 and Scale 4 from Cavalini’s (1992, pp. 53-54) factor
analysis. The three-scale solution also had a union of most items from Scale 1 and all items from Scale 2.
This seems somewhat unfortunate, given that the first scale had a strong emotional component whereas the
second reflected a more rational attitude. The four-scale solution basically had the same four scales in
terms of interpretation as the factor analysis solution. Because the questionnaire was used for research but
not for individual diagnosis, reliability is less important and interpretation will be more important.
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Table 3
Scales Determined Using the Mokken Item Selection Procedure

Discussion

The simulation study had several limitations. First, the maximum number of dimensions was three. This
covered most, but not all, relevant situations. However, there is no reason to believe that results would be
much different for more than three dimensions. Second, each item measured one dimension. In practice, it is
reasonable to assume that items can be multidimensional (e.g., an arithmetic item can also require verbal
skills). However, because of correlations between the underlying traits such items will be positively corre-
lated. Third, dimensions were represented by equal numbers of items and this number was not varied across
the design. Equal numbers of items reflects an effort to have subtest scores of approximately equal reliability.
However, in practice, the number of items may be different. Furthermore, the spread of the item locations was
fixed. But it was argued that manipulating the discriminations would have effects comparable to manipulat-
ing item locations. The factors that were manipulated here were the most informative given that almost
nothing was known about item selection from multidimensional item banks in the framework of the Mokken
approach to scaling.

Note that the research strategies are based on an admittedly limited but well-chosen and completely crossed
design. Empirical datasets often will have relatively irregular characteristics that may lead to deviations from
the patterns predicted here. However, the design studied here is believed to be appropriate for many practical
datasets.

An interesting topic for future research would be further comparison of the methodology proposed here
with results from other methods such as factor analysis. For example, the characteristics of items or item
sets that produce different results may be investigated, as in the empirical example presented here. Such
research should preferably use empirical data in addition to simulated data, as in this example. This future
research should also address the limitations of the present simulation study.

The strategy proposed here can be used to investigate whether an item set is multidimensional. Note,
however, that finding the correct number of unidimensional scales is often not the only goal in scale
construction. Perhaps a scale should not be split into two unidimensional scales measuring highly correlat-
ing traits. In that case, reliability and validity will be important issues.
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