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Estimation of Reliability Coefficients Using the Test
Information Function and Its Modifications

Fumiko Samajima

University of Tennessee

The reliability coefficient and the standard error of
measurement in classical test theory are not properties
of a specific test, but are attributed to both a specific
test and a specific trait distribution. In latent trait mod-
els, or item response theory, the test information func-
tion (TIF) provides more precise local measures of
accuracy in trait estimation than are available from the

reliability coefficient. The reliability coefficient is still
widely used, however, and is popular because of its
simplicity. Thus, it is worthwhile to relate it to the TIF.
In this paper, the reliability coefficient is predicted

from the TIF, or two modified TIF formulas, and a spe-
cific trait distribution. Examples demonstrate the vari-
ability of the reliability coefficient across different trait
distributions, and the results are compared with empiri-
cal reliability coefficients. Practical suggestions are
given as to how to make better use of the reliability
coefficient. Index terms: adaptive testing, bias, clas-
sical test theory, item information function, latent trait
models, maximum likelihood estimation, reliability co-
efficieno, standard error of measurement, test informa-
tion function, trait estimation.

Reliability and validity coefficients have been widely accepted by psychologists and test users as im-
portant concepts in classical test theory (CTT). The reliability coefficient (~°x~2), where X~ is the test score
and X, is the retest score, can be expressed as the ratio of the true score variance to the observed test score
variance. ~ is largely influenced by the homogeneity or heterogeneity of the group of examinees to
whom the test was administered as well as properties of the test. In spite of this, many researchers and test
users still treat r~~2 as if it were an attribute solely of the test.

In latent trait models, or item response theory (iRT), the item information function (IIF) and the test
information function (TIF) provide measures of the local accuracy of trait estimation, a concept that is miss-
ing in CTT. The values of the IIF and the TIF do not depend on the specific group of examinees tested, unlike
r,,,, (i.e., the IIF and TIF are population-free). Therefore, ~°X~2 and the associated standard error of measure-
ment (SEM) are not as important as they were before IRT became feasible. However, because of its simplicity
~-y is still popular among test users. Thus, it is worthwhile to relate it to the TIF, and to suggest better ways
to use ~X ~2.

L,a~l~y (1943) related the normal ogive model and ~XX. He showed that r~x% is obtained from the
1 ~ 1 2

estimated error score variance and the observed test score variance when the trait distribution is N(0,1)
and the difficulty parameters of the n dichotomous test items distribute normally. Lord (1952) showed
how the discrimination index of a test in CTT at a given trait level (which is closely related to the amount
of test information) is related to rxx, at a specified trait level, when the regression of test score on 0 level
is approximately linear. Samejima (1977b) showed that rlx, can be obtained from the TIF and the trait
distribution of a target population. Lord (1983) discussed unbiased estimators of the parallel forms rX~2 in
the three-parameter logistic model. The idea of replacing the CTT concepts of ~°~~ and the SEM by the TIF
in IRT is advanced by the proposal of two modified TIF formulas (Samejima, 1~990), which use the bias
function of the maximum likelihood estimate (MLE) (Samejima, 1987, 1993a, 1993b).
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The present paper uses information from the MLE bias function (MLEBF) of a test to predict the rX¡X2 and
SEM attributed to a specified examinee group to whom a test is to be administered. The results of predicting
TX¡X2 using the original TIF and the two modified versions of the TIF also are compared.

The TIF and Local Standard Error of Estimation

Let 0 be the latent trait that takes on any real number. Assume that there is a set of n test items measuring
0 whose characteristics are known. Let g denote such an item, kg be a discrete response to item g, and fl (0)
denote the operating characteristic of k~9 or the conditional probability assigned to Ag, given 8; that is, 

k,

Assume that ~(8) is at least five-times differentiable with respect to 0. The item response information
function (S~rnejirna9 1972) is defined as

and the IIF, ~(9), is defined as the conditional expectation of ~ (0), given 8, such that

When item g is scored dichotomously, the IIF is simplified to

where P (8) is the operating characteristic of the correct answer to item g. This is identical to the item
information function proposed by ~irnba~~m (1968) for the dichotomous response item. Let V be a re-
sponse pattern such that

The operating characteristic, P,(O), of the response pattern V is defined as the conditional probability of
V, given 0, and assuming local independence (Lord & Nwi~k9 1968),

The response pattern information function (Samejima, 1972), 7y(e), is given by

The TIF, 1(0), is defined as the conditional expectation of 1,,(0), given 0, and from Equations 2, 3, 6, and 7,

Again, the relationship between the IIF and the TIF demonstrated in Equation 8 is identical to the result
Birnbaum (1968) demonstrated at the dichotomous response level.

The reciprocal of the square root of the TIP, [7(9)]&dquo;~, is the asymptotic standard deviation of the condi-
tional distribution of the MLE of 0, given its true value. This function usually is used as the standard error
of estimation (SEE) even when the number of test items is finite and relatively small. Note that the SEE is
a function of 0-it is locally defined. Also, unlike its counterpart in CTT, the SEE does not depend on a
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specific group of examinees, but is solely a property of the test.
In CTT, the SEE gives the impression that the test always provides the extent of error indicated by its value.

Common sense suggests, however, that no test can be appropriate for every group of examinees. For ex-
ample, if a simple arithmetic addition test is administered to college mathematics majors, almost everyone
will correctly answer all the items. In such a case, the test is useless, because the results do not reflect the
individual differences among the examinees. If a calculus test is administered to elementary school students,
opposite-but similar-results will occur. Thus each test is effective only locally on the 0 dimension. The SEM
of the test should differ, therefore, for groups of examinees at different locations on the 0 scale. It is more
appropriate to consider the error of measurement as a function of 0, as IRT models do.

Prediction of the e9I~~~II~y Coefficient the SEM for a Specifle 0 Distribution Using the TIF

Using the TIF, it is possible to link CTT with IRT through the prediction of r°x X, and the SEM for a specified
8 distribution or a specified group of examinees (Samejima, 1977b). 

’ ’

Let at be any estimator of 0,

were £ denotes the error variable. In the test-retest situation,

where a subscript 1 indicates the test, and a subscript 2 indicates the retest. If it can be assumed that in the
test-retest situation,

and

then

where 0* represents either atl or Q~, and e represents either £1 or E,. Thus, the correlation between 8tl
and 8tz is

Note that if 8 is replaced by one of its transformed forms (i.e., the true test score ~’), and if the observed
test score X is used as the estimator of T’, and E is used as its error of estimation, then Equation 9 can be
rewritten as

then Equation 15 becomes a familiar equation for the reliability coefficient fy ^,9

In general,

If the error variable F- is conditionally unbiased for the 0 interval of interest, then Equation 18 will be

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



232

reduced to

When the MLE of 0 is used, let 8y or 6 denote the MLE of 0 based on the response pattern V. Samejima
(1977a, 1979) observed that even with a relatively small number of test items the conditional distribution of 6,
given 0, can be approximated by the normal distribution N{8,[7(6)]~} if two conditions hold. Condition 1
is that 11 must be practically conditionally unbiased for the 8 interval of interest. Condition 2 is that 1(0)
must assume reasonably high values for that specific interval. The best approximation occurs when this
interval covers the range of 8 within which most examinees are located. When this is the case, from

Equation 19,

where y(e) denotes the density function of 6 for a specific group of examinees. Thus, from Equation 15,

Equation 21 indicates that the reliability coefficient )r(6j, #~)) can be predicted by a single administration
of the test, given 1(0) and the 0 distribution of the examinees. 

A 
.

It also has been observed (Samejima, 1977b) that in computerized adaptive testing (CAT), ~°(&reg;h &reg;2~ can
be predicted if a specified amount of test information is used as the stopping rule for a given 0 level in the
test and retest situations. Thus,

where 7~(6) and ~(0) are the preset criterion Tips in the test and retest situations, respectively, which are
adopted as the stopping rules for the two testing sessions (a subscript 1 indicates the test situation, and a
subscript 2 indicates the retest situation). Note that these two criterion Tips need not be the same for the
test and the retest, nor do they need to be constant for all 0. Note also that r(6p 6j is obtainable from a
single test administration, because all that is needed is the sample variance of 0, to replace Var(ej in
Equation 22. t-(61,62) will change if the preset criterion TiFs [/~(8), I~z~(~)9 or both] change. For the simpli-
fied case in which the same amount of test information is used as the criterion for terminating the presen-
tation of new items for every examinee in each of the test and retest situations, respectively, Equation 22
can be rewritten as

where U2 and ~2 are the reciprocals of the constant amounts of criterion test information in the two testing
situations, respectively. If a constant amount of test information is used as the stopping rule for every
examinee in both the test and retest situations, then r(6,, 6,) takes the simplest form

where CY2 denotes the reciprocal of this common constant amount of test information.
The appropriateness of the above normal approximation of the conditional distribution of 6, given 0,

can be examined using the monte carlo method (see Samejima, 1977a). A necessary condition for this
approximation is that 6 is practically conditionally unbiased, that is, the regression of 6 on 0 is very close
to 0 itself, for the interval of interest. This can be examined using the MLEBF of the test, which is intro-
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duced below. Note that the MLEBF together with the 0 distribution of the target population also determines
whether the assumption described by Equation 13 can be accepted.

Because the SEM in CTT is for the entire group of examinees, the SEM, Og, of a test attributed to a specific
0 distribution can be written as

when Conditions 1 and 2 described above hold.

Assume that the test items have already been calibrated; that is, the item parameters of each item have
been estimated following an appropriate mathematical model for ~(8). This can be done either separately
.from, or simultaneously with, maximum likelihood estimation of the individual parameter 0 for a
nonadaptive test. In the former situation, 8y will be obtained for every individual by using the estimated
item parameters. In CAT, the item parameters for the items in the item pool usually have been estimated
before using the item pool for adaptive testing; using these estimated item parameters the individual
parameter 8y is obtained as a result of testing, which is based on a tailored subset of the item pool for each
examinee. Thus, Var(6) and Var(9J in Equations 21 or 22 can be computed.

From Equations 2, 3, and 8, 1(0) for a nonadaptive test can be estimated using the estimated item
parameters. The density function, f(O), can either be estimated (e.g., Samejima, 1981) or set a priori if
prediction is the purpose, as it is here. Thus, E{[/(6)]’’} is obtained with 1(0) replaced by the estimated TIP
in Equation 20, approximating the area by a number of rectangles of small widths or following Simpson’s
quadrature formula (Elderton & Johnson, 1969) for the approximation to the integration. Using the result
of Equation 20 and the computed sample variance of 6, that replaces Var(6) in Equation 21, the r)6),6~j
attributed both to the test and to the specific examinee group is obtained. Similarly, the SEM can be
obtained by Equation 25. For a CAT, ~(&reg;a9 can be obtained by using the preset criteria&horbar;7~(6) for the test
and ~)(9) for the retest-and the sample variance of 9j that replaced Var( 6j) in Equation 22.

If conditional unbiasedness is not supported for the 0 interval of interest, appropriate modifications for
Equations 21 and 25 are needed. This can be done using the MLEBF (Lord, 1983; Samejima, 1997, 1993a,
1993b) and the modified ’TIFs (Samejima, 1990).

The l~L~~~ and Two Modified TIF Formula

Lord (1983) proposed a bias function for the MLE of 0 in the three-parameter logistic model; its oper-
ating characteristic for the correct response, ~(0), is given by

where ag, bg, and cg are the item discrimination, item difficulty, and guessing parameters, respectively,
and D is a scaling factor, which is set equal to 1.7 when the logistic model is used as a substitute for the
normal ogive model. Lord’s bias function, denoted by ~~&reg;9 &reg;~,~9 can be written as

In Equation 27, the bias should be negative when &dquo;’i8) is less than .5 for all the items [which is necessar-
ily the case for some interval of 0, (-~, &reg;L))9 and should be positive when &dquo;’i8) is greater than .5 for all
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items [which also necessarily happens for some interval, (8H, +00)], and in between these values of 8 the
bias tends to be close to 0.0. This is obvious because the last factor on the right-hand side of Equation 27
assumes negative values for some items and positive values for others, and their total tends to be close to
0.0, provided that the bgs are distributed over a wide range of 0. Lord (1984) applied this MLEBF to an 85-
item verbal test and found that the bias was practically 0.0 for a wide range of 0.

Samejima (1987, 1993a, 1993b) expanded the MLEBF to include any discrete item responses. The
MLEBF in the general case can be written as

where Ak(8) is the basic function (Samejima, 1969) for the discrete item response k,, and P&dquo;(0) and #&dquo;(0)
denote the first and second partial derivatives of fl (0) with respect to 0, respectively. For the graded re-
sponse model in which item score x~ assumes successive integers, 0 through mg, each kg in Equation 29 must
be replaced by the graded item score x~. For a dichotomous response model, it can be reduced to the form

where g’(0) and Pa’(&reg;) indicate the first and second partial derivatives of ~(8) with respect to 0, respec-
tively. Equation 30 includes Lord’s bias function in the three-parameter logistic model as a special case.

Samejima (1990) proposed two modified formulas for the TIF. They both use the MLEBF. One modified
version takes the reciprocal of an approximate minimum variance bound, and the other modified version
takes an approximate minimum bound of the mean squared error of the maximum likelihood estimator. The
first modified TIF, Y’(&reg;), is defined by

The first partial derivative of the MLEBF with respect to 0, which is used in Equation 31, is provided by

for the general case of discrete item responses, where #[10) and I’(0) denote the third and the first partial
derivatives of ~ (8) and 1(0) with respect to 0, respectlvcly. For a set of dichotomous items, Equation 32
becomes 

’

where It’(S) indicates the third partial derivative of fl(0) with respect to 0 (see Samejima, 1987, 1990,
1993a, 1993b).

Equation 31 shows that the relationship between this new function and the original TIF depends on the
first partial derivative of the MLEBF. To be more precise, if the partial derivative is positive, 1’(8) will be less
than 1(0); if it is negative, this relationship will be reversed; if it is 0.0 (i.e., if the MLE is conditionally
unbiased), 1’(S) and 1(0) will have the same value.
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The second modified TIF, 3(8), is defined by

The difference between 1’(8) and 3(8) (Equations 31 and 34, respectively), is the second and last term in
the braces of the right-hand side of Equation 34. Because this term is non-negative throughout the entire
range of 0, S(8) :5 1’(8) regardless of the slope of the MLEBF.

When the MLEBF of a test is monotonically increasing, Equations 31 and 34 show that T(0) and 3(8)
will never be larger than 1(0). In this specific case, S(8) :5 1’(8) :5 1(0) throughout the entire range of 8.

~°(~i9 &reg;~) and the SEM When Conditional Unbiasedness of the MLE of 0 Does Not Hold
When practical conditional unbiasedness of the MLE of 0 does not exist-that is, B(o; 8y) is not approxi-

mately 0.0 for all values of 0 in the interval of interest-T(0) or E(9) should be substituted for /(6) in
Equations 21 and 25. Thus, Equation 21 can be rewritten as

or

In theory, E(0) is more appropriate, but in many cases discrepancies between T(6) and E(6) are small (see
Samejima, 1990), so T(6) can be a good substitute for ~,(&reg;). ~ls&reg;9 in CAT, T(6) or E(6) can be used as the
stopping rule in place of I(0), ~nd Equation 22 can be revised into the forums

or

In the same way, the two modified sEt~~9 and ~£,Z3 ~hich are attributed to a specific distribution of 8,
can be rewritten as

and

Equation 29 shows that ~e;6y) can be estimated if each item has been calibrated and the estimated fl (0)
has been obtained. Thus, using this estimated MLEBF, T(6) and E(6) are estimated using Equations 3 and
34, respectively. Using these two modified TIFs, both r(6,, 6~ and the SEM can be obtained using Equations
35, 36, 39, and 40, in a similar manner as was described when 1(0) was used.

p~~ Applications

TIFs and Predicted r(6,, 6,)s and SEMs
Method. Six distributions of 0 were hypothesized. Predictions were made for each of the six 0 distri-

butions about the r(6,,6,)s and SEMs that would be obtained for a hypothetical test using the three different
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TIF formulas. From Equations 21 and 25, the r°(~,, &reg;Z) and SEM were obtained using 1(8); fromAE9uations 35
and 39, the ~(&reg;,9 62) and SEM were obtained using T(8); and from Equations 36 and 40, the r(&reg;1, (2) and SEM
were obtained using ~(0). T’he six hypothetical distributions of 0 were normally distributed with different
means and standard deviations: Distribution 1, N(O, 1); Distribution 2, N(-.8, 1); Distribution 3, ~1(0, .5)9
Distribution 4, N(-.8, .5); Distribution 5, h1(-i.6, .S)9 and Distribution 6, N(-2.4, .5), respectively. Figure
1 shows the density functions of these six distributions of 8.

Figure 1
Density Function of Six Hypothetical Distributions of 0:

[From Samejima (1994). Reprinted by Permission of Kluwer Academic Publishers]

The hypothetical test consisted of 30 equivalent dichotomous items, which followed the logistic model
(Equation 26) with a - 1.0, ~ -0.0, c~ = 0.0~ and I~ =1.7. This particular hypothetical test was selected
because the interval of 0 for which practical conditional unbiasedness of the MLE By, given 9, holds was
expected to be small because of the common difficulty parameter for all the items; therefore, the discrep-
ancies between T(0) or E(0) and 1(0) were expected to be large for a wider range of 0 than those for a more
typical test. This choice was made for the purpose of comparing the predictions of r(b,,,,9,) for a specific
distribution of 0 when 1(0) was used versus T(8) or E(0).

Another reason for this choice was considerations in CAT. In CAT, except for the initial few items

presented to an examinee, the tailored subset of items selected from the item pool consists of nearly
equivalent items. If the same level of accuracy in estimating 6 for all examinees is desired, for example,
then it is reasonable to use a single specified amount of test information as the criterion in the stopping
le. In so doing, the choice between 1(0) and T(6) or will make a substantial difference, especially
for examinees with very high levels of 0 and for examinees with very low levels of 0, because in many
cases the item pool will lack extremely difficult and extremely easy items.

Results. The MLEBF of this hypothetical 30-item test is shown in Figure 2. Note that outside the
interval of 0 (&reg;I.09 1.0) the amount of bias becomes increasingly large. The square roots of the TIFS [1(0),
T(6), and E(0)] are shown in Figure 3.

Tables I and 2 present the predicted r(6,,62)s and SEMs for the six different distributions of 0, respec-
tively. Integration in Equations 21, 35, and 36 was approximated by dividing 0 into small steps of an
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Figure 2
MLEBF of the Hypothetical Test of 30 Equivalent Items

equal width of .05 and using a number of rectangles. In Table 1, the mean and standard deviation (SD) of
0 for each of the six distributions also are given. These SDs are slightly different from the squares of the
second parameters of the normal distributions-. 9915 7 versus 1.00000 for Distributions 1 and 2, and
.50155 versus .50000 for Distributions 3, 4, 5, and 6, respectively, whereas all of the means are the same
as the hypothesized normal distributions. The discrepancies in sl~s are a result of using the rectangle
method, which uses the density of each of the equally spaced points of 0 as one side and the step width,
.05, as the other, in order to approximate the normal distributions.

Table 1_ shows that the predicted r(6j, 62) obtained by using 7(8) was widely distributed; that is, it ranged
from .20049 to .89641. fi8p 9~j decreased as the mode of the distribution shifted from a range of 0 in which
the amount of test information was greater (e.g., Distributions 1 and 3) to another range in which it was
lesser (e.g., Distribution 6). The reduction was more conspicuous when the SD of the normal distribution
was smaller (compare Distributions 1 and 2 versus Distributions 3 and 4). The predicted ~°~&reg;~, ~2)s orb-
tained using T(8) indicated a substantial reduction from those using l(B) for each of the six distributions
of 0. For Distribution 2, r(6,,62) decreased from .82324 to .264’~99 for Distribution 5 from .4~71 ~ to
.21681; and for Distribution 6 from .20049 to .01182. The reduction is more conspicuous for Distribu-
tions 2, 5, and 6, which were distributed on lower levels of 6 where the discrepancies between I(B) and
T(8) were large. Among the six distributions, the predicted r(6,,62) obtained using T(6) varied from
.01182 to .80074, showing even larger differences. Similar results were obtained for the predicted ?i6,, 6~js s
using E(6); these r(6,,62)s varied from .01109 to .79920. Also, for each distribution the reduction in
~~~~9 &reg;2) from that obtained by Equation 35 was relatively small, as expected from Figure 3. Similar results
were obtained for the sems, in the reverse order, as shown in Table 2.

In CTT, the SEM, GE, is given by

Careful observation of Table 1 reveals that there were substantial discrepancies between the values of a,
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Figure 3
Square Roots of I(B) (Solid Line), ~’(0) (Dashed Line), and See) (Dotted Line) for the Hypothetical 30-Item Test

[From Samejima (1994). Reprinted by Permission of Kluwer Academic Publishers]

obtainable by Equation 41 using the attributed i-(61,62)s in Table 1 in place of f~ in Equation 41 and the
corresponding SEMs, which were obtained by Equations 25, 39, and 40. For example, using the values of

r(6j, 02 obtained for Distribution 1 from the different TIF formulas [1(0), T(0)., and these results were
.31914, .46453, and .47936, respectively; for Distribution 3 they were .21433, .22388, and .22475; and for
Distribution 6 they were .44846, .49857, and .49876. There are differences in the degree that this set of three
values differ from the corresponding set in Table 2. These different degrees of disagreement may be ex-
pected, for the degree of violation from the assumptions behind CTT was different for each distribution of 0.

The three predicted error variances of the MLE of 6 arc presented in Table 2, for each of the six hypo-
thetical distributions. They were obtained using Equation 20, and by similar equations in which 1(0) was
replaced by T(0) or respectively. 0 was divided into small intervals of .05 width, and a number of
rectangles were used for approximate integration. Simpson’s quadrature formula (Elderton & Johnson,
1969) also could have been used and perhaps would have provided more accurate results.

Predicted Versus Empirical Reiiabilities

Nlethocl. In order to evaluate the resulting predicted r~&reg;1, 6~)s obtained by using 1(0), T(9), and E(6),
a set of empirical r(6,, &reg;2)s for the six 0 distributions were used as criteria based on simulated data. Follow-

Table 1
Obtained Mean and SI~s of 0 and Predicted r 6,, 6,)s for Each of the

Six Distributions of 0 Using 1(0), Y°~&reg;), and ~,(&reg;)
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Table 2
Predicted SEMs and Theoretical Error SDs for Each of the Six 8 Distributions

Using I(e), ~(~~, and ~(&reg;~

ing each of the six distributions of 0, a group of examinees was hypothesized. A response pattern of each
hypothetical examinee was produced for the test and retest situations using the monte carlo method.
Because the test consisted of 30 equivalent dichotomous test items, the number-correct (NC) test score
was a sufficient statistic for the response pattern, and the MLE of 0 was obtained as a one-to-one mapping
of this sufficient statistic (Lord & Novick, 1968, p. 429). There were 1,998 hypothetical examinees for
Distributions 1 and 2, and 2,004 for Distributions 3, 4, 5, and 6.
A problem arose as to how to deal with the --s and +as obtained as the MLEs of 0, before the corre-

lation coefficient between the two sets of b,s could be computed. Table 3 presents the frequencies of
these two extreme values in the test and retest situations separately, and of those in both situations, for
each of the six distributions of 0. Although there were only three -ocs in the retest and no other --s or
+ms for Distribution 3, more than half of the examinees in Distribution 6 obtained -- as their MLE of 0
in the initial test as well as in the retest, and more than one-third of the total examinees obtained -a in
both. As is common practice, the --s and -~--s were replaced by arbitrary single values of -2.65 and
2.65, respectively, and the correlations were computed using these values.

Table 3

Frequencies of --s and +°°s Obtained as MLEs of 6 in the Initial Test
and the tZetesi, and in Both, for Each of the Six Distributions of 0

~e~~rlts. Test-retest reliability correlations, together with the two means, the two variances, and the
covariance, are presented in Table 4. These results were compared to the predicted r(o,, 6~)s in Table 1. For

Distribution 3, for which only three replaced values were used (see Table 4), the empirical r(6,,6.,)s were
very close to the predicted values; that is, .80724 versus .81738 [1(0)], .80074 [T(9)], and .799’ -
Note, however, that in general the empirical 1-(6-1 61) became larger than the predicted value as the total
frequency of the --s and +°°s increased. This enhancement is artificial, however, because by using -2.65
and 2.65 in place of -- and +00, respectively, those who obtained -- as their MLE of 0 both in the test and
retest situations were treated as if they obtained the same estimated 0 in the two testing situations, even
though the distance between the two &horbar;~s could be infinitely large, for example. The same logic applies for
Note that this enhancement did not occur for Distribution 4-.72334 versus .73250, .66611, and .65589
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(see Tables 1 and 4). For Distribution 4, the frequencies of +- were 0 in the test, the retest, and the combi-
nation of both, and the frequencies of -00 were as small as 56 and 45 in the test and retest situations,
respectively, with only 14 individuals overlapping in both (i.e., the second smallest frequencies next to
those for Distribution 3).

Table 4

Empifical r(6~, 6~)s for Each of the Six Distributions of 0 Based on the MLEs of the Sample Examinees in the
Test-Retest Situation Using Arbitrary Values of ~-2.65 and ±2.12271 for Infinite Estimate Values and NC Scores,

and Mean and Variance of ±2.65 Scores at Test and I2etest and Their Covariances

The empirical a~(~1, 6,)s also depended on the replacement values used for -- and +-, especially when
many examinees received -c- or +0° as their MLE of 0 (compare Distributions 5 and 6 to Distributions 3
and 4). Because the two replacement values, -2.65 and 2.65, that were used in computing the empirical
~°(9~, &reg;~)s presented in Table 4 were arbitrary, the empirical r(&,, 6.,)s were computed again by changing
these two replacement values to --2.122‘~1 and 2.12271, respectively. The results also are shown in Table
4. Comparing these values with those presented in the 2.65 column of Table 4, each of the values for the
empirical r(b,, 6~)s is greater than the corresponding value for 2.65. Although the increment is almost 0.0
for Distribution 3 and it is mild for Distribution 4, it is substantially large for Distributions 5 and 6. These
results are predictable from the differences in the number of replacement values used for the different
distributions (compare the frequencies of --s and +-s for these distributions in Table 4).

The variability that exists among the empirical -r(&reg;1, &reg;Z)s across different distributions of 0 might
have been the result of using 6~ rather than the 1~C score, although this interpretation is illogical. This
is not the case, as is obvious from theory. To illustrate this, the empirical r~s also were computed
using the NC for each distribution of 0. The results in Table 4 show the same type of variability in the
empirical r(6j, Q~s across the six 0 distributions as was observed when 9y was used. The empirical r,,’2S s
based on NC were slightly higher than those obtained using ^ov and 2.65 or 2.12271 in place &reg;f-as and
+-s. This results from the fact that 0 and 30 were used for the two indeterminant scores and artificially
enhanced the correlations. A set of r(6,,62)s based on e could be produced that are even closer to those
based on the NC score by adjusting the replacement values for --s and +~s.

When a subgroup of examinees who obtained the same NC score other than 0 and n is considered, it can
be taken as an indicator of some sort of homogeneity among these in the subgroup. When the test score is
either of these two extreme values, however, this type of homogeneity cannot be assumed, because giving 0
or n as the test score simply means that the test has failed in discriminating these examinees’ 0 levels. Be-
cause the r,,,,, based on NC, or of the reliability coefficient based on 6v with an identical replacement value
for each oo, treats each of these two subgroups of examinees as if they had the same level of 0, the empirical
n6p 6,,)s tend to be higher than they actually are, especially if there are many Os or ns, or both. This explains
the differences between the empirical r(6,, 6,)s in Table 4 and the predicted ~°(&reg;,, 92~s in Table 1.

Estimating Upper Bounds of Empirical Reliabilities

It is obvious from the foregoing that an identical replacement value for each of the --s and +-s should
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not be used in obtaining the empirical r(6,, ê2)s that are to be used as the criterion to evaluate the three
predicted r( 81, (2)S. Because there is no reasonable way to handle --s and +-s, several attempts were
focused on obtaining an estimate of the upper bound of the empirical ~°~&reg;I, 6~) for each 8 distribution. Thus,
in Method I the resulting r(6,, (2)S were obtained by:
1. Assigning a randomly produced true 0 following the density function

where ~a=30, to each examinee whose MLE of 0 was -00. Then the amount of bias, B(0; 6,), was added to
the 0 thus assigned, and then the error score, produced by randomly following N fO, was added,
and the resulting value was substituted for the --.

2. This same process was followed for each examinee whose MLE of 0 was +~; however, the density
function in Equation 42 was replaced by

An identical value &reg;f tr~e 6 was assigned in the test and retest to an examinee who obtained -- or +00 in
both testing situations. The estimate of the upper bound of r(6,, &J for each of the six distributions of
0 is presented in Table 5 (Method 1 ). Because of the way these substitute values for -cos and +--s were
produced, it was expected that the results would be very conservative upper bounds f~r r~&reg;1, &reg;~~.

Table 5
Estimated Upper Bounds of r(6&dquo;6,) by Methods 1 and 2 for
Each of the Six Distributions of 0 Based on the h4LEs of

Sample Examinees in the Test-Retest Method _

In Method 2, the results were obtained by using a truncated normal distribution to generate a true 9;
that is, the population normal density function was divided by vertical lines into five segnents whose
areas were proportional to the frequencies of: (1) those who obtained -- on both the test and retest, (2)
those who obtained -- in the test (or retest) situation only, (3) those who obtained finite values for their
MLEs of 0 in the test (or retest) situation, (4) those who obtained +°o in the test (or retest) situation only,
and (5) those who obtained +c- on both the test and retest. The ordinate in each segment was divided by
the total area of the segment to become densities. Again, an identical value of true 0 was assigned in both
the test and retest situations to an examinee who obtained -- or +- in both sessions. Because of the way
in which these substitute values for --s and +oos were produced, it was expected that the results would be
even more conservative than those of Method 1.

The estimates of the upper bound of n6p 6,) for each of the six distributions of 0 for Method 2 also are
presented in Table 5. The estimates of the upper bounds of the 82)s increased substantially over the
results obtained by Method 1 when the data included a substantial number of -- or +-s for which the
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substitute values would be used (Distribution 6). This is because of how the true value of 9 was assigned
in Method 2; it made the variability in the substitute values for -- too small.

Although the results of Method 1 provide legitimate upper bounds of the empirical r(bl, 62) for the
different 0 distributions, it is obvious from theory that they are still far too conservative. Thus, procedures
similar to the above two methods were followed without assigning an identical true 0 to an examinee who
obtained -- or +00 in both the test and retest situations. The results also are shown in Table 5 (Method 1

Modified and Method 2 Modified). These two sets of results were similar to each other. Note that the two
values for each distribution of 0 were between the predicted r(6,, 6,)s obtained by Equations 21 [1(0)] and
35 [T(9)], respectively (see Table 1).

Discussion Practical ~~p~~~~t~~~s

The above examples were based on a hypothetical test of 30 equivalent items, which provided large
discrepancies between the original TIF and the two modified TIF formulas. However, this test is not the
kind of test usually used in practice. Figure 4 presents the square roots of the original TIF and its two
modification formulas for two empirical tests-the Iowa Level 11 Vocabulary Subtest (Figure 4a), which
consisted of 43 dichotomously scored items, and Shiba’s Word/Phrase Comprehension Test .11 (Figure
4b), which consists of 54 dichotomously scored items (see Samejima, 1993a, 1993b).

Figures 4a and 4b show that (1) the three curves are flatter than those of the 30 equivalent test items,
(2) the decrease in the amount of information is not as radical as 0 departs from the modal point, and (3)
the discrepancies between the square root of the original TIF and those of the modified formulas are not as
conspicuous (Figure 4 versus Figure 3). However, the two curves for the modified formulas are almost
overlapping, as was observed with the 30 equivalent test items (Figure 3).

Tables 1 and 5 showed that, although all three predictions of r(6&dquo;6,) were accurate when the distribu-
tion of 0 was in the interval of 0 in which the amount of test information was large, when the 0 distribu-
tion shifted away from this interval Equation 35 or Equation 36, in which 1(0) in Equation 21 is replaced
by I(8) or E(0), respectively, were better predictors than Equation 21. Thus the MLE bias function is useful
in predicting r(ol, 6,). Considering that the values in Table 5 are upper bounds of the reliability coeffi--
cients, Equation 36 in which E(0) is used will be the most appropriate formula.

Thus the results of the present research suggest that it is advisable to use E(9) rather than 1(0) for
predicting the reliability coefficient of a test attributed to a specific distribution of 8, as well as the crite-
rion in the stopping rule of a CAT. With a finite number of test items the MLE Of 0 is conditionally biased,
given 0. Therefore, in theory the use of E(0), which is based on the minimum bound of the mean squared
error of Qy rather than the minimal variance bound (Samejima, 1990), is more reasonable than that of
T(9) also, although the two results provided similar values here.

These examples were selected intentionally to make the differences among the different 0 distribu-
tions and among the three predicted ~~&reg;,9 ~Z~s for each 0 distribution substantially large, using equiva-
lent test items. Because equivalent test items are seldom used in actual tests, the differences between
the resulting predicted reliability coefficients obtained by using 1(0) and by using either T(9) or E(6)
arc expected to be less.

Because of more useful and informative measures like the TIF and its two modified formulas, the
reliability coefficient of a test is no longer important in modern test theory. It is interesting, however, to
predict the reliability coefficient-which is attributed to separate groups of examinees-using the Tips. The
traditional concept of test reliability is misleading, because the reliability coefficient of the same test can
be drastically different for different groups of examinees.

If the reliability coefficient must be used, a practical suggestion is to compute the predicted reliabil-
ity coefficients attributed to as many different hypothetical distributions of 9 as can be conceived for
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Figure 4
Square Roots of lee) (Solid Line), T(0) (Dashed Line), and 2(e) (Dotted Line)

for Two Tests Following the Logistic Model

which the test is likely to be administered. In this way, one of the reliability coefficients can be selected,
depending on the group from which the examinees being tested have been sampled. This will improve
the current use of the reliability coefficient in which a single value is recorded in the test manual as the
reliability coefficient and is used with no consideration of the population from which the sample of
examinees have been selected.
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