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The Discriminating Power of Items
That Measure More Than One Dimension
Mark D. Reckase, American College Testing

Robert L. McKinley, Educational Testing Service

Determining a correct response to many test
items frequently requires more than one ability.
This paper describes the characteristics of items of
this type by proposing generalizations of the item
response theory concepts of discrimination and
information. The conceptual framework for these
statistics is presented, and the formulas for the

statistics are derived for the multidimensional
extension of the two-parameter logistic model. Use
of the statistics is demonstrated for a form of the
ACT Mathematics Usage Test. Index terms: item

discrimination, item information, item response
theory, multidimensional item response theory.

Statistical measures of item discrimination are computed for several reasons. The traditional
measures, usually the point-biserial or biserial correlations between item scores and total scores, are
used as general indicators of item quality or as screening variables for use in selecting items for a
test. During test construction, items are often selected that have a discrimination index that is greater
than a specified value, such as .20 or .30. Discrimination indices may also be used to determine whether
an item measures the same construct 2s the total score on the test. For the most part, the item response
theory (IRT) measures of discrimination-and the related concept of item information-are used in
these same ways, but they are also used to specify the precision of measurement provided by an item
at different levels of ability (0) along the 0 scale.

Both the traditional and IRT measures of the discriminating power of an item are based on the
assumption that a test measures a single trait-either that defined by the total score or by the 0 scale.
This paper generalizes the concept of item discrimination to the case in which more than one ability
is required to determine the correct response to an item. In making this generalization, the concep-
tual framework supplied by IRT is used. This paper also draws on the definition of multidimensional
item difficulty (MID) developed by Reckase (1985).

In unidimensional IRT, the difficulty of an item is indicated by the point on the 0 scale where
the slope of the item response function (IRF) is the steepest, which is the same point as the point
of inflection of the IRF. MID, similarly, is the point where the item response surface (IRS) (i.e., the
probability of a correct response for each point in the multidimensional 0 space) is steepest when
the slope is determined in the direction from the origin of the space. This is also a point of inflection
for the IRS. Thus, MID indicates the location in the 0 space where the test item is most discriminating.

In this paper, multidimensional discrimination (MDISC) and multidimensional information (MINF)
are defined. The definitions are consistent with current IRT methodology and are helpful in under-
standing how an item is functioning when assessing multiple skills. To assist in the use of these item
statistics, the concepts are presented in three ways: (1) a conceptual framework is developed; (2) the
general concepts are applied to a particular multidimensional item response theory (MIRT) model,
and the MDisc and MINF statistics are derived for that model; and (3) MDISC and MINF are computed
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using item response data from a form of the American College Testing (ACT) Mathematics Usage
Test. The interpretation and use of the statistics are also discussed.

Conceptual Framework

More than one ability is often necessary to respond correctly to test questions. For example, reading,
problem solving, and computational abilities may be needed to solve mathematics story problems.
In most IRT models, it is assumed that the probability of a correct response to an item increases with
an increase in the level of the trait being measured. Likewise in MIRT models, it is assumed that the

probability of a correct response increases when there is an increase in any one-or any combination-
of the abilities required for solving the item. Therefore, in one region of the 0 space the probability
of a correct response will be very high, whereas in another region of the 0 space, the probability
will be very low. In general, the discriminating power of an item indicates how quickly the transition
takes place from low probability to high probability of a correct response. A highly discriminating
item divides the regions clearly-having a narrow region of ambiguity, that is, a region where the
probabilities are intermediate in magnitude. Figure 1 shows the IRSs for two items, one (Item 1) with
moderately high discrimination and the other (Item 2) with lower discrimination. Note that the two
items do not discriminate in the same direction in the 0 space.

The measures of discrimination proposed here describe the characteristics of an item in two ways.
First, a measure of the maximum level of item discrimination is presented. Item discrimination is
related to the slope of the IRS. The slope differs, however, depending on the location in the 0 space
and the direction relative to the surface at that location. For example, for Item 1 in Figure la, the
slope is almost flat at the point (-2,-2) in any direction; at the point (2,-3) the slope is steep in a
direction roughly parallel to 0,; and it is fairly low, or even zero, in a direction that travels across
the surface. The maximum level of item discrimination is at a location and in a direction where the

slope is steepest. The steeper the slope, the more clearly the item divides the 0 space into two regions.
Clearly, Item 1 in Figure 1 more clearly divides the 0 space into two regions than does Item 2. Item
1 is more discriminating than Item 2 overall, but they are not dividing the 0 space in the same way.

The discriminating power of an item can also be described relative to a particular direction in
the 0 space. Using this measure, two items can be compared directly to determine which is a better
measure of a particular trait. In Figure 1, for example, Item 2 is better than Item 1 at differentiating
two persons who are at points (0, = 1, 9z = 0) and (0, = 1, 62 = 1) in the 0 space. Note that these
two persons only differ on 0,. Thus, Item 2 has more MINF for measuring 02 in the specified region
of the 0 space. In fact, Item 2 has a faster rate of change in probabilities than Item 1 when the rate
is determined in a direction parallel to 6z.

Theoretical Framework

The work presented below is based on the assumption that the interaction between a person and
an item can be described by one of a class of well-behaved probability functions. These functions
relate the probability of a correct item response to a person’s location in a multidimensional 0 space,
as indicated by the ability vector 9, and the characteristics of the item, as indicated by a vector of
item parameters, 6. That is,

where x,~ is the score on item i for person j. This function is assumed to be &dquo;well behaved&dquo; because
for all dimensions in the space, or any combination of dimensions, as 0, increases, P(x,~ = 1) is

nondecreasing.
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Figure 1
Response Surfaces for Items That Vary in Discriminating Power and Dimension Assessed

a. Item 1

Multidimensional Discrimination

A measure of item discrimination for an item that can be described by Equation 1 is useful to

the extent that it provides the same type of information that is provided by the unidimensional
discrimination statistics. That is, MDISC should allow items to be compared on a general measure
of quality, to be classified as above or below a standard of quality, and to be used as an indicator
of strength of the relationship of item performance for each dimension in the 0 space. Further, it
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would be especially convenient if the MDISC statistics were related to the MID statistics in the same
way that unidimensional IRT item statistics are related, because then some of the interpretive
framework that has been developed for the unidimensional case could be generalized to the multidimen-
sional case.

In unidimensional IRT, the discrimination parameter is related to the slope of the IRF at the point
where the slope is steepest, the point of inflection. The point of inflection is also used to define the
difficulty parameter for an item. The most direct generalization of this concept to the multidimen-
sional case would be to relate MDISC to the slope of the surface defined by Equation 1 at the point
of steepest slope on the surface in the multidimensional space.

This definition of MDISC, however, has several problems. For some mathematical forms of the
function in Equation 1 (e.g., Sympson, 1978), the point of maximum slope occurs when at least one
of the 8s approaches infinity. Therefore, the MDISC statistics could not be related to MID in the same
way that is true for the unidimensional models. For other classes of models (e.g., Equation 5), there
are an infinite number of points of maximum slope. This fact also causes difficulties when inter-
preting the MDISC statistic. Therefore, an alternative definition for MDISC is proposed that uniquely
determines a single value for MDISC and closely relates it to the MID.

The proposed definition specifies the MDisc as a function of the slope of the IRS defined by Equa-
tion 1 at the steepest point in the direction indicated by the MID. This is the direction from the origin
of the 0 space in which the IRS has its steepest slope. Conceptually, determining the MDISC value
requires several steps. First, a direction from the origin of the space is selected, and the point of in-
flection of the IRS along the line defined by this direction is determined. This process determines
the point of steepest slope in the direction specified. Next, the slope at the point of inflection in
the specified direction is determined. The same process is followed in each direction from the origin,
and the steepest slopes are determined. These slopes are compared to determine the steepest slope,
which then is used to compute the MDISC statistic. The direction that gives the steepest slope is the
same as the direction specified by the MID. The distance from the origin to the point of steepest slope
in the direction indicated by the MID is the distance component of the MID statistic.

The MDISC statistic is an overall measure of the capability of an item to distinguish between in-
dividuals that are in different locations in the 0 space. A similar statistic can also be developed that
is conditional on any particular direction in the space. An interesting special case would be to deter-
mine the discrimination in directions along the coordinate axes. These conditional statistics would
give information about how well the item measures a particular dimension.

The mathematical procedure for determining MDISC has four steps.
1. To simplify the analysis, first convert the mathematical expression for the IRS to polar coordinates.
2. Use the second derivative in direction a from the origin to determine the point of steepest slope

in that direction.
3. Determine the expression for the slope at the point of steepest slope using the first derivative.
4. Take the first derivative with respect to a to determine the direction of overall steepest slope.

A function of the slope in that direction is proposed as the MDISC statistic.
This procedure yields a value of MDISC that has the same relationship to MID that the a parameter
has to the b parameter in unidimensional mr’. This relationship is demonstrated below when the MDISC
definition is applied to a particular MIRT model.

Multidimensional Information

MINF is related to the MDISC in that if an item has a high value of MDISC, it will provide a large
amount of information somewhere in the 0 space. However, MINF differs from MDlsc because MINF

I
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is concerned with the capability of the item to discriminate at each point in the space, rather than
just at the steepest point of the IRS.

The definition of MINF proposed here is a direct generalization of the unidimensional IRT con-
cept of information. In unidimensional IRT, information at a 0 level is the ratio of the square of
the slope of the IRF at 0 to the variance of error of the item score at that level of 0. Mathematically,
item information is expressed as

where 1,(0) is the information from item i at 0, ~(8) is the probability of a correct response to item
i for a person with ability 0, and Q,(O) = 1 - ~(8). Test information is simply the sum of item infor-
mation values, or

where n is the number of items.
For the multidimensional case, Equations 2 and 3 can still be used, but the slope in the numerator

of Equation 2 must be determined in a slightly different way. For an IRS, there are many slopes at
any point in the 0 space rather than one. Depending on the direction that is taken at the point in
the space, the slope will differ. The slope will be much greater if a direction is selected that goes
up the surface rather than one that goes across it. One direction may yield a slope of 0; but another
direction, at the same point in the space, may yield a fairly steep slope. Thus, direction in the space
must be considered when determining the information provided by the item. This is the same as speci-
fying how much information is provided about a particular composite of abilities at a point in the
0 space.

To determine the slope in a particular direction, the mathematical procedure known as the direc-
tional derivative is needed. The directional derivative is defined as

where a is the vector of angles with the coordinate axes in the 6 space,
a, (i = 1, ..., n) is an element of the vector,
0 is the vector of abilities defining a point in the space, and
Oi (i = 1, ..., n) is an element of the vector.

Equation 4 gives the slope in direction a at the point 0 in the 0 space.
When computing MINF, the directional derivative replaces the derivative in the numerator of Equa-

tion 2. Then item information can be determined for any angle-each angle representing different
composites of abilities-in the space. Thus, to totally describe the information structure of an item,
many information plots are needed. In principal, an information function can be determined for
the infinite number of directions from the origin. In practice, determining the information function
for angles at 10° intervals between 0° and 90° from the axes is sufficient to determine where, and for
what combination of abilities, an item provides information.

MDISC and MINF for the Multidimensional Extension of the Two-Parameter Logistic Model (M2PL)

To demonstrate the use of MDISC and MINF, a MIRT model is needed that can be used to derive
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the mathematical expressions for the statistics. Reckase (1985) developed the MID concept using the
M2PL model, and an estimation program is available for the model (McKinley & Reckase, 1983);
therefore, the M2PL model is used here as an example. However, the concepts can also be applied
to other MIRT models.

The M2PL model is given by &dquo; 
. 

,

where x;; is the score (0,1) on item i by person j,
a, is the vector of item discrimination parameters,
di is a scalar parameter that is related to the difficulty of the item, and

Oj is the vector of ability parameters for person j.

Multidimensional Discrimination

The MDISC for an item is a function of the slope at the steepest point in the MID direction for
an item. Reckase (1985) derived the MID direction as

B&dquo;’’’&dquo;&dquo;’.1 / . 
_ ,

where ai, is the angle with axis k for item i, . i

aik is the kth element of vector a,, and

m is the number of dimensions in the space.
He also determined that the slope of the IRS at the point of inflection in direction a, is

Substituting Equation 6 into Equation 7 yields the slope in the MID direction:

For the unidimensional two-parameter logistic (2PL) model, the slope at the point of inflection is
equal to (1/4)a,.

Thus, (1:;=1 a,k)&dquo;Z is analogous to the a parameter in the unidimensional model. Therefore, the
MDISC can be defined as

This definition of MDISC has several useful properties. First, if an item measures only dimension t,
that is, when alf > 0 and all = 0 for all j # t, MDISC = a,i. Thus, for this special case, the MDISC
is equal to the unidimensional discrimination parameter (as it should be).

Second, when the 2PL model is expressed in the slope-intercept form, the exponent is given by
a,Oj + di, where d, = -b;a;. The distance, Di, in the MID has the same relationship with the inter-
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cept term, di, of Equation 5 as b; does with d; for the 2PL model. That is,

because

,...-& I

Finally, MDISC is on the same scale as a;k-four times the slope-so it can be interpreted according-
ly. Therefore, the definition meets all the requirements stated above for a generalization of the IRT
discrimination parameter.

Multidimensional Information

To compute the MINF for the M2PL model, the directional derivative of the IRS is needed. The direc-
tional derivative is given by

K=l

This expression can be substituted for the term in the numerator of Equation 2, yielding

From this equation, the information at the point indicated by 0 in direction a can be determined.
As with the unidimensional definition of information, the item information functions can be summed
to obtain a test information function. However, when test information is computed, the same direc-
tion must be used for all the items.

Example of the Application of MDISC and MINF

To demonstrate the use of MDISC and MINF, Form 24B of the ACT Mathematics Usage Test
(American College Testing, 1982) was analyzed to determine estimates of the parameters of the M2PL
model. Responses from a systematic sample of 1,000 examinees were used. The MAXLOG program
(McKinley & Reckase, 1983) was used to estimate the parameters. A two-dimensional solution was
obtained so that the results could be represented graphically.

MDISC and MINF Estimates for All Items

The parameter estimates for the M2PL model, the MID (both the direction and the distance), and
the MDISC statistics for the 40 items in the test are presented in Table 1. Item 27 had the highest MDISC
statistic, which means that this item was the best at differentiating between examinees in different
parts in the 0 space. However, this item discriminated best along a line that is at a 46° angle to the
Dimension 1 axis. Along the Dimension 1 axis (at 0° to the axis), the discrimination was only 1.66,
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. 
’ 

?~. :&dquo; ’ I . Table 1 -- - .,.ar, ~~~9’= 
’

Item Parameters, MID, and MDISC for the Items in the ACT ,

Mathematics Usage Test, Form 24B 
’ 

’ ’ ’

which was less than the discrimination for Item 10 along the Dimension 1 axis. Thus, the DISC

gives an overall measure of the quality of the item, but clearly the item is not of equal quality in
measuring in all directions (i.e., for all weighted composites of abilities).

The MDISC statistics for two items can only be directly compared if the items measure in the same
direction (e.g., Items 29 and 36, for which U29.1 = a36., = 52 and U29.2 = U36.2 = 38). The MDISC
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statistics cannot be compared for Items 3 and 30 because the directions are quite different. To com-
pare these items, a common direction a would have to be selected, and then the discrimination in
the a direction would have to be computed using the formula

m

Directional Discrimination ai, cos aik . (14)
k=¡

For Items 3 and 30, the directional discriminations in direction 30° from Dimension 1 were 1.54 and

1.19, respectively; at 60° from Dimension 1, they were 1.10 and 1.39, respectively. Thus, depending
on the direction, the ordering of the items on discrimination changes. However, Item 3 was more
discriminating overall because it has a higher MDISC statistic.

Table 2 provides correlations among the MDISC statistics, the biserial correlation between the item
and the total score on the test (r,,,), the a parameter estimates from the three-parameter logistic model
obtained from LOGIST (Wingersky, Barton, & Lord, 1982) (aWGfST)’ and the a parameter estimates
from the M2PL model. The MDISC statistic for this dataset had the highest correlation with the r,,,
statistic. It is interesting that aLO~,s,. is most highly correlated with a2, but re,s is most highly related
to a,. The relationship betweemvtDISC and a, and az is dictated by Equation 9.

Table 2
Correlations Among Discrimination

Parameter Estimates

MINF for A Single Item

The MINF was computed for Item 10 using directions of 0°, 30°, 60°, and 90° from Dimension 1.
The results for this item are shown in two different ways in Figures 2 and 3. Figure 2 indicates the
amount of information in direction a by the height of the surface above the 0 plane. The four parts
of Figure 2 show the surfaces for each of the four directions. The figures show that the item gives
no information about 0,, and that the amount of information provided by the item increases as the
angle decreases from 90° (Figure 2d) to 0° (Figure 2a). In all cases, the information is greatest along
the line, 0, = -.19.

These same data are presented in Figure 3 using a representation scheme suggested by Thissen
(personal communication, 1984). At selected points in the 0 space, the information is represented
by the length of the line in the direction taken in the space. Lines are given at 10° intervals. Figure
3 shows that Item 10 gives no information about Dimension 2, but progressively provides more infor-
mation as the angle decreases from 90° to 0° with respect to Dimension 1. Most of the information
provided in the four parts of Figure 2 is given in Figure 3.

Test Information

The information supplied by the entire test is shown by the three surfaces in Figure 4 and the
line plots in Figure 5. Comparison of Figures 4a and 4c shows that the test supplies somewhat
more information about 0, than 0,. Figure 4b shows that the most information is provided when
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’ 

Figure 3
Information for Item 10 Represented by Directional Vectors

From Points in the 0 Space

the direction is 45° to 0,; this is equivalent to an equally weighted composite of 0, and 62. The same
information is given in Figure 5, but the line plot more clearly indicates the regions of the 0 space
that are best measured by the test.

Figure 5
MINF for the ACT Mathematics Usage Test Represented as Directional Vectors

From Points in the 0 Space
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Conclusions
The multidimensional measures of item quality, item precision, and test precision given here pro-

vide a set of tools that can be used to gain a better understanding of the measurement process. Their
use, in conjunction with appropriate multidimensional models, may lead to a more powerful class
of measurement devices for most psychological and educational variables than those based on the
relatively unrealistic unidimensional models.
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