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The Cost of Dichotomization
Jacob Cohen
New York University

Assuming bivariate normality with correlation r, di-
chotomizing one variable at the mean results in the re-
duction in variance accounted for to .647r’; and dichot-
omizing both at the mean, to .405r’. These losses, in
turn, result in reduction in statistical power equivalent
to discarding 38% and 60% of the cases under repre-
sentative conditions. As dichotomization departs from
the mean, the costs in variance accounted for and in

power are even larger. Consequences of this practice
in measurement applications are considered. These
losses may not be quite so large in real data, but since
methods are available for making use of all the origi-
nal scaling information, there is no reason to sustain
them.

It is a frequent procedure in the behavioral and
social sciences to dichotomize &dquo;continuous&dquo; (more
accurately, graduated) variables. Some researchers
follow this practice in order to simplify the data
analysis, which it undoubtedly does. The increas-
ing popularity of loglinear models has also pro-
moted this practice among researchers eager for
state-of-the-art methodology. Others justify it on
the grounds that ( 1 ) the variable in question is too
crude to warrant the refinement of the original grad-
uated scale and that (2) dichotomization more truly
represents the modest measurement content of the
variable. The latter is a misconception: In fact, to
the measurement error in the original sca.lc, dich&reg;t-

omizing simply adds errors of discreteness. That
is, the amount of (unmeasured) true score variance
for the cases at each of the two points of the di-
chotomy is necessarily greater than it would be for
cases at each of the multiple points in the original
scale.

Humphreys and Fleishman (1974) have criti-
cized dichotomization in the context of its appli-
cation to individual difference variables in anal-
sis-of-variance designs. Cohen and Cohen (1983)
have inveighed against this practice quite gener-
ally, arguing that it results in underestimating effect
sizes and reducing the power of statistical hypoth-
esis tests. Specifically, they have claimed that di-
chotomization results in proportions of variance
accounted for that are some .64 (or less) as large
when it is performed on one of the two variables
being correlated, and only .40 (or less) as large
when both variables are dichotomized. However,
they offered neither reference nor proof.

The Effect on the Population r

This problem can be viewed as the extreme case
of what has been called &dquo;broad&dquo; or &dquo;coarse&dquo;

grouping. Before computers, statistical compute-
tion was facilitated by summarizing data arrays as
frequency distributions over 10 or 12 intervals with
the means or midpoints of the latter used to rep-
resent the cases in each interval. To offset the re-

sulting inaccuracy, Peters and Van Voorhis (1940,
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pp. 393-399) showed how correlation coefficients
computed from such grouped data could be &dquo;cor-

rected for broad categories&dquo; and provided a proof
and a table of values for effecting such corrections
for 2 to 15 intervals under various assumptions.
Assume a bivariate normal population whose

product-moment correlation equals r. If one vari-
able, say X, is dichotomized at the mean (or me-
dian) so that two equal &dquo;broad intervals&dquo; result,
the observed correlation between the binary X~ and
Y will equal .798r, which results in X, accounting
for &reg;nIy (.79~z = ) .637 as much ~’ variance as the
original X does. Note that by dichotomizing X,
the resulting correlation is the same as the point-
biserial correlation.

The .798 value from Peters and Van Voorhis

(1940), as noted, holds for equal intervals, hence
dichotomization at the mean. An alternate proof
can be developed, which proceeds by finding the
ratio of the point-biserial r to the biserial r° (i.e.,
the bivariate normal population’s r) and results in
the general multiplying constant
e = hl[h(1 - p)~ 9 [I]
where h is the ordinate of the standard unit normal
curve and p is the proportion of the cases in either
of the two intervals. For dichotomization at the

means = .3989, p~ = .50, so e = .798, agreeing
with the Peters and Van Voorhis ( 1940) value. As
the cut departs from the mean, e decreases. For
example, at .5 5D from the mean, where p =
.691 ~ and h = .3521, e = .762 and = .581.

At 1 SD, often used to define &dquo;extreme&dquo; or’ ’clear-
cut&dquo; c~ses, p = .8413, y h = .2420, so e = .662

and = .439. Beyond 1 SD, the loss in variance
accounted for is quite precipitous: At 1.5 .fd3, for
example, e 2 = .269. Concretely, then, for dichot-
omization at the mean and at .5, 1.0, and 1.5 SD
from the mean, an r2 of .16 becomes an r2 ofX~
with Y (which equals e 2r2) of. .1029 .0939 .070, and
.043, respectively9 ~°2 is cut in h~lf (i.e., e2 = .5)
when - .79 (i.e., at .81 Sl7).

The Effect &reg;~n the r and on the t test

A sample from a bivariate normal population
cannot be exactly bivariate normal but will ap-

proach that form asymptotically. ’I‘hcrcf&reg;re9 where
rs would have been obtained for the sample on the
original graduated data, dichotomizing X results
approximately in ~~59 with the obvious deleterious
effect on the value of t when the null hypothesis
is tested. Instead of testing the significance of ras

via the standard

the test is performed on a value approximately er,
(i e e e , the point biserial r~ )’ 9

which, expressed as a proportion of t ~isee dividing
Equation 3 by Equation 2) is

so that the significance test td yields a smaller value
than t.

For any given value of ~°,s9 the maximum value

of q comes at the maximum value of e, .798 at

p = .50. Maximally, then, the fraction of t ob-
tained following dichotomization is approximately

Concretely, for dichotomization at the mean, the
proportion of t obtained varies fro. .7~ at rs = .2

to .62 at r°S = .7. With unequ~l cuts 9 e is no longer
at its maximum so the q values are smaller still:

e.g., at 5 S’D from the mean (where p = .69 and
e = .762), the fraction of t that results decreases
from .76 to .59 (again as rs varies from .2 to .7).
For large n and/or large r,, a thaw is three-fifths
to three-quarters as large as it should be may still
be large enough to be statistically significant. How-
ever, for the sample sizes and rs that prevail in
much of behavioral science, the cost of &dquo;simply-
fying&dquo; analyses by dichotomization may well be
too dear.

The Effect on Statistical Power and

on Effective and Necessary Sample Sizes

The preceding was an indirect demonstration of
loss of statistical power caused by dichotomization.

1This is identically the value of t (and for the same df = n - 2)
that would be obtained from a test of the difference between Y

means of the two groups of Xd (Cohen & Cohen, 1983).
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A direct assessment can proceed by means of the
methods given in Cohen (1977, pp. 75-107, 457-
458). If ~ bi~~ri~te normal population whose z _ . .30

(operationally defined as a &dquo;medium&dquo; effect size)
is assumed, a test of the hypothesis that r = 0 at
the two-tailed .05 level performed on a sample of
80 cases has a probability of rejection (power) of
.78, i.~., ~ reasonably good chance. As has been
seen, dichotomizing X at the mean results in the
reduction of the population correlation to

.798r = .798(.30) = .239. The power is now re-

duced to .57, virtually a coin toss. Dichotomization
has here produced power of .57 for n = 80, but
on the original graduated scale where r = .30,
power of .57 is achieved for ~a = 50 (Cohen, 1977,
pp. 92-93). Thus, dichotomizing is equivalent to
throwing away 30 of the 80 cases. Fort = 60,
dichotomization reduces power from .65 to .45,
the latter obtainable on the graduated scale at

n = 37, a willful loss of 23 of the 60 cases. For
ax = 40, power is reduced from .47 t&reg; . 31, which
was obtainable on the original scale at n = 25,
equivalent to discarding 15 cases. The loss in ef-
fective sample size when X is dichotomized at the
mean is about 38% for these examples and remains
at approximately this level over the range z = .2

to .5 and for both .01 and .05 level tests.

As the dichotomization departs from the mean,
e is reduced from .798 and with it the power and

effective sample size. For example, when X is di-
chotomized at 1 SDI, e is about two-thirds (.6623);
the population correlation falls to .20; and at _ 80,
60, and 40, power falls to .43, .34, and .24, re-
spectively. These values, in turn, are available on
the original scale at ns of 35, 27, and 19, respec-
tively, so that extreme ( 1 S&dquo;17 ) dichotomization has
cost the equivalent of 55% of the cases. The ef-
fective loss of ~c remains at about 55% over the

range of population r fro .2 to .5 and at both the
.01 and .05 level at the 1 SD point of cut.

Yet another way to set the price tag on dichot-
omization is to reverse the above and to determine

the increase in sample size needed to offset dichot-
omizing. If, again, a population r = .30 is as-

sumed, the sample size needed for power to equal
.80 for a two-tailed .05 test is 84. For &dquo;optimal&dquo;
dichotomization at the mean, the ear of

.239 requires 133 cases under the same conditions,
an increase in the necessary sample size of 58%.
For r = .20, the rise is from 193 to 304, and for
r = .40 from 46 to 74, about the same percentage
increase. For dichotomization at 1 SD under the
same c&reg;r~diti&reg;~s, the ~ required increases about
130%.

The Effect &reg;~° Both Variables

What happens when both X and Y are dichoto-
mized ? This is what is done when the bivariate
normal distribution is reduced to a fourfold table.

Paralleling the previous argument, the product-
moment correlation between X, and Y, (each coded,
e.g., 1, 0) is the familiar phi coefficient, and its
relationship to the original r (effectively, to the

tetrachoric r) can be found by following Peters and
Van Voorhis (1940, pp. 395-398). With dicho-
tomization of both X and Y at their means, the r
between and Yd equals .637 ~°. (The constant
.637 here is .7982, the result of applying the .798
correction in of van-correction twice.) Expressed in proportion of var-
iance terms, the effect of double dichotomization
at the means is to reduce r2 to (.637’- r? _ ) .40~ r 2.

The consequence to power of reducing r to .637r
for double dichotomization at the means can be

translated, as before, into reduction in effective

sample size. As noted above, when the population
r is .30, ~ sample of 80 cases has power = .78 to

reject the null hypothesis at the two-tailed .05 level.
For the reduced r of .637(.30) = .191, power is
.39, a level attainable for 32 cases for the original
at _ .30. For ~a = 60, power is reduced from .6S
to .31, the latter attainable on the original scale at
n = for n = 40, the reduction in power is
from .47 to .21, attainable originally for n = 16.

Thus, double dichotomization at the mean is equiv-
alent to discarding 60% of the cases here, and this
60% loss holds approximately over the range
r = .20 to .50 and at both the two-tailed .01 and
.05 levels.

It is unnecessary to undertake a proof that with
dichotomization away from the mean on X and/or

~’, ~° for the dichotomies is lower still, &reg;r to pursue
in detail the effects on power. They are clearly
grimmer than those seen for dichotomizing one

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



252

variable. It is no exaggeration to say that double
dichotomization may result in the loss of as much
as two-thirds of the proportion of variance that
could be accounted for on the original variables,
with a resulting loss of power equivalent to throw-
ing away as much as two-thirds of the sample.

It is time to retrieve a hostage left behind in the
proof-the assumption ofbivariate normality. This
is, of course, a convenient fiction: No real data can
be exactly normally distributed, since (if for no
other reasons) X can neither be literally continu-
ously distributed nor go to inanity. However, there
is abundant evidence throughout applied psycho-
metrics and statistics that the failure of the nor-

mality assumption, unless extreme, bears only mar-
ginally on the validity of the conclusions drawn.
It is, of course, possible to construct nonnornal
bivariate distributions where dichotomization re-
sults in an increase in r over that of the original
graduated variables; but these will be characterized
by extreme skewness, heteroscedasticity, and cur-
vilinearity, e.g., step functions. Needless to say,
such distributions are uncommon in the behavioral

and social sciences. When they do occur, dichot-
onization is a far inferior approach to one that uses
all the measurement information in the original
graduated data and tackles the curvilinearity di-

rectly, e.g., polynomial regression (Cohen & Cohen,
1983, chap. 6).
The accuracy of the three-digit values for the

multiplying constants does, of course, depend on
the normality assumption. In real data, which lack
the exact form or infinite number of gradations of
a theoretical normal distribution, they may be 1 %
to 15% higher. This still implies losses of one-fifth
to one-third of r2 for single and double dichoto-
mization at the mean(s), and more as cuts become
more extreme.

Discussion

The reduction in r due to dichotomization is cen-

trally a measurement issue. It seems self-evident

that the inevitable effect of dispensing with the
score differences within each of the two portions
of the distribution, leaving only the distinction be-
tween the two, is the loss of a considerable amount

of measurement information. It is this loss or deg-
radation of measurement information that produces
the drop in r (or, for that matter, any measure of
effect size).

This loss from dichotomization should not be
confused with the familiar attenuation due to clas-
sical random measurement error. Dichotomization
results in the systematic loss of measurement in-
formation; and the foregoing development requires
only the condition of bivariate to produce
the drop from r to er. Therefore, the dichotomi-
zation drop will occur for both true and observed
scores. For observed scores, the already measure-
ment-error-attenuated r drops further to er, while
a measurement-error-free r’ drops to e~°’, with e
depending only on the point of cut (Equation 1).
The test construction technology developed a half-

century ago frequently employed dichotomization
for criteria (c.~., total score became &dquo;high-low,&dquo;
final grade became &dquo;pass-fail&dquo;) in the interest of
computational efficiency. The test constructors of
the precomputer era usually corrected upward the
resulting drop to ~a~ by determining biserial or

tetrachoric correlations. Failure to do so was not

serious, since they used the item-criterion corre-
lations primarily to order the items, discarding those
with the lowest values or selecting those with the
highest. Fully justifiable for that time and purpose,
this practice of our grandparents may have left as
an unconscious residual among contemporary psy-
chologists and other behavioral scientists a casual
readiness to dichotomize that is neither appropriate
nor justifiable. Consider some typical examples.
l. Dichotomization in order to apply loglinear

models has already been mentioned. A similar
practice is to dichotomize on a control variable
used for &dquo;blocking&dquo; (matching) in analysis-
of-variance designs. Since blocking is equiv-
alent to partialling, the reduction to er may
produce the same insidious kind of distortion
that occurs when an unreliable variable is par-
tialled (Cohen & Cohen, 1983, chap. 10). An
irony here is that the researcher may dichot-
omize the blocking variable or control variable
because it is thus making a bad
situation worse.

2. Occasionally, it is found that a batch of scaled
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items is dichotomized preparatory to a factor

analysis. The resulting phi coefficients and the
factor loadings they yield are approximately
two-thirds as large as the product-moment cor-
relations on the original data would have been
and the communalities (however estimated) less
than half as large. The standard normal vari-
max rotation, which is actually performed on
communality-adjusted loadings and then scaled
back, is quite likcly to be distorted because
small errors in small communalities can pro-
duce large differences in the loadings that ac-
tually determine the rotation.

3. The dichotomization of an attitude scale item
is frequently encountered in social or political
science research, say, one that provides a 4-
to 6-point Likert type agree-disagree response
scale. The dichotomization may be effected at
the middle of the scale, in the interest of sim-
plifying the analysis or display of the results,
or (worse) near one end, to sharpen the dis-
tinction between extreme cases and the rest of
the distribution. A similar practice is endemic
in marketing and advertising research, where
the &dquo;top box,&dquo; i.e., the most favorable cate-
gory of a multipoint scale, is distinguished
from all the others.

4. Dichotomization is also resorted to frequently
in psychiatric research. Symptom or behavior
scale items, responded to on a scale of degree
(e.g., from &dquo;not at all&dquo; to &dquo;severe&dquo;) or fre-
quency (e.g., from &dquo;never&dquo; to &dquo;always&dquo;) are
dichotomized at the extreme point, in an effort
to assure that the symptom is &dquo;actually&dquo; pres-
ent or that only bona fide or &dquo;clear-cut&dquo; cases
are identified. When bivariate distributions in-

volving such scales are plotted, they are almost
invariably linear, demonstrating that the di-

chotomization has indeed produced a loss of
measurement information.

Readers can undoubtedly supply additional ex-

amples of their own.
To summarize, the cost in the degradation of

measurement due to dichotomization is a loss of

one-fifth to two-thirds of the variance that may be
accounted for on the original variables, and a con-
comitant loss of power equivalent to that of dis-
carding one-third to two-thirds of the sample. Such
losses cannot be justified, given the availability of
methods that fully exploit all the original mea-
surement infornation (Cohen & Cohen, 1983).
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ERROR CORRECTION

Cohen, Jacob. The Cost of Dichotomization, Volume 7, Number 3, pp. 249-
253.

Equation l &reg;n page 250 should as follows:

e ~ 
h 

(1)e 

[p(1-p)]~- 
. (1 )

Readers should remove this page and insert it in their copy for future
reference.
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