University of Texas

Raiph J. De Ayala
University of Maryland

The purpose of the present research was to develop
general guidelines to assist practitioners in setting up
operational computerized adaptive testing (CAT) sys-
tems based on the graded response model. Simulated
data were used to investigate the effects of systematic
manipulation of various aspects of the car procedures
for the model. The effects of three major variables
were examined: item pool size, the stepsize used along
the trait continuum until maximum likelihood estima-
tion could be calculated, and the stopping rule em-
ployed. The findings suggest three guidelines for
graded response CAT procedures: (1) item pools with
as few as 30 items may be adequate for car; (2) the
variable-stepsize method is more useful than the fixed-
stepsize methods; and (3) the minimum-standard-error
stopping rule will yield fewer cases of nonconverg-
ence, administer fewer items, and produce higher cor-
relations of cAT 6 estimates with full-scale estimates
and the known 9s than the minimum-information stop-
ping rule. The implications of these findings for psy-
chological assessment are discussed.  Index terms:
computerized adaptive testing, graded response model,
item response theory, polychotomous scoring.

Computerized adaptive testing (CAT) has emerged
as one of the important innovations in measurement
applications fostered by recent developments in item
response theory (IRT). The major advantage of CAT
is that persons may be measured very efficiently
when the items used to measure them are matched
to each individual’s ability level. CAT methods have
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been researched thoroughly for multiple-choice ap-
titnde and achievement testing, and some proce-
dural guidelines and general recommendations for
their implementation have been established (Reck-
ase, 1981; Weiss, 1981, 1983, 1985). Also, several
major commercial test publishers are currently mar-
keting CAT versions of their standardized tests, all
of which use the multiple-choice item format.

One major limitation of these CAT systems, how-
ever, is their reliance on dichotomous item re-
sponse data (this is also a limitation of many IRT
applications to date). The use of the multiple-choice
format as a standard for test items dictates to some
extent what can be measured on tests, and the bi-
nary scoring of such items results in a loss of di-
agnostic information that might otherwise be ob-
tained from incorrect answers.

In contrast to the dichotomous item response
data obtained from scoring multiple-choice tests,
numerous measurement applications naturally pro-
duce polychotomous item response data. For ex-
ample, in a mathematics problem worth 5 points,
1 point might be awarded for the successful com-
pletion of each step in the problem-solving se-
quence, so that item scores may range from 0 to
5. With items such as these, partial-credit scoring
may be used to represent the steps completed by
an examinee in solving the problem. Also, rte-
sponses to attitude instruments whose items use the
Likert format are scored into multiple ordered cat-
egories. Again, ordered-response scoring is appro-
priate because the integers assigned in scoring the
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item may be thought of as representing locations
along the attitude continuum from negative to pos-
itive.

Fortunately, several IRT models have been de-
veloped for the analysis of polychotomous item
response data. For example, the graded response
model for polychotomous item responses proposed
by Samejima (1969) offers great potential for a
wide variety of measurement applications, includ-
ing cognitive, personality, and attitude assessment.
In the realm of cognitive assessment, Samejima
(1969, 1976) successfully applied the graded re-
sponse mode! to items where partial credit was
awarded for partially correct solutions to the prob-
lems. Also, Koch (1983) and Dodd (1985) have
demonstrated that the graded response model may
be used for measuring attitude trait levels with
Likert-type attitude items. It might be feasible to
use graded response CAT procedures effectively
for these two applications, as well as for person-
ality assessment.

The results of some initial efforts to apply other
polychotomous item response models for CAT ap-
plications have been quite encouraging. Specifi-
cally, Koch and Dodd (1985, in press) used the
partial credit model (Masters, 1982) in CAT pro-
cedures for attitude measurement using Likert-type
items and for simulated achievermnent test data. Very
high correlations were consistently found between
the trait estimates yielded by the short adaptive
procedures and the corresponding trait estimates
obtained from the full-scale administrations of the
items. Additionally, Dodd (1987) found the rating
scale model (Andrich, 1978a, 1978b) to perform
very well for adaptive attitude measurement. De
Ayala and Koch (1987) employed the nominal re-
sponse model (Bock, 1972) in CAT procedures for
mathematics achievement testing and again ob-
tained good results.

The reason for attempting to develop procedures
for the computerized adaptive administration of
polychotomously scored items is the same as the
basis for CAT with multiple-choice aptitude or
achievement items. Namely, a person’s trait level
can be measured quite efficiently and accurately
with relatively few items because the items are
chosen very carefully to be appropriate (individ-

ually taiiored) for the person. With CAT, the par-
ticular set of items administered to an individual
depends on the specific responses he/she makes to
the items. In theory, each person’s trait level may
be measured with a different set of items, yet all
estimates of persons’ trait levels are on the same
measurement scale.

Before any general recommendations can be made
for CAT using the graded response model, however,
substantial basic research still must be conducted.
Therefore, the purposes of the present study were
to manipulate systematically certain aspects of a
graded response CAT procedure and to determine
the effects of these manipulations on the opera-
tional characteristics of the car. Examined in the
research were the effects of three major variables:
item pool size, the stepsize used along the trait
continuum until maximum likelihood estimates could
be calculated, and the stopping rule employed. The
basic objective in conducting the study was to at-
tempt to develop general guidelines that might as-
sist practitioners in setting up operational CAT sys-
tems based on the graded response model.

The Graded Response Model

The graded response model developed by Sa-
mejima (1969) is an extension of the two-parameter
logistic model for dichotomously scored items to
the polychotomous case. For each item, a discrim-
ination parameter and a set of category boundaries
are estimated. Samejima developed a two-stage
process to obtain the probability that an individual
will receive a given category score on item i. In
the first stage, the probability that an individual
with a certain trait level will receive a given cat-
egory score or higher on item i is expressed by

exp[Da(0—b,)]
1+exp[Da(6—5b,)] ~

where D is the scaling constant 1.7 which max-
imtizes the similarity of the logistic func-
tion to the cumulative normal ogive
function,
a; 18 the discrimination parameter of item
i

P(8) = %
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6 is the trait level, and characteristic curve. The operating characteristic
b,, is the category boundary associated with  curves obtained with Equation 2 for the hypothet-
a particular category score x; (x; =1, ical item used to demonstrate the category char-
, ML), acteristic curves are presented in Figure 2.
In essence, each use of Equation 1 reduces the Samejima also extended Birnbaum’s (1968) for-

polychotomously scored item to a dichotomously  mulation of information functions to the case where
scored item, such that the graded responses are items are polychotomously scored. Item informa-
classified into two categories—scores lower than  tion is defined as
x; and scores equal to or greater than x;. Figure 1 P
depicts a set of category characteristic curves ob- [{(8) = 2 ——
. . . xi=0 P (8)
tained from the use of Equation 1 for a hypothetical o . o
item with category scores that range from 0 to 4.  Where P.(8) is the probability of receiving category
The second stage in obtaining the probability that ~ Score x; conditional on 6, and P(8) is the first
an individual will respond in a given category in-  derivative of P (8). The information an item pro-
volves subtracting adjacent category characteristic ~ vides is a function of the item discrimination pa-
curves. Samejima defined the probability that an ~ rameter and the category boundary parameters. Items
individual will respond in a given category as with category boundary parameters thaff span a wide
P(6) = PH(8)— P, (6) @ range provide mfo.rmaﬂon.across a wider range'of
a sl ’ the 6 scale than items with category boundaries
Equation 2 is the general form for obtaining the - that span a small range. The maximum amount of
operating characteristic curves of an item for the  information an item provides is also a function of
graded response model. In order to use this equa-  the discrimination parameter; items with high dis-
tion to obtain the probability of responding in the  crimination power provide more accurate mea-
lowest category, the first category characteristic  surement of trait levels in the range of the category
curve is subtracted from 1.0. The probability of  boundary parameters than items with low discrim-
responding in the highest category is obtained with  ination power. Because some item information
Equation 2 by subtracting 0.0 from the last category ~ functions are quite peaked, some are relatively flat

) 3

Figure 1
Category Characteristic Curves for a Graded Response Item
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Figure 2
Operating Characteristic Curves for a Graded Response Item
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across levels of 8, and some are multimodal, item
information functions can be quite useful in cAT
systems to decide on the specific items to admin-
ister to a particular examinee once an estimate of
his/her 6 level is available.

Method
Overview of Procedures

The effects of three major variables were studied
in the present research: (1) the size of the graded
CAT item pool (30 items and 60 items), (2) the
stepsize method used prior to obtaining a maximum
likelihood 6 estimate (fixed—either .4 or .7—and
variable), and (3) the stopping rule used to ter-
minate the CAT (prespecified minimum iter infor-
mation or minimum standard error of the 8 esti-
mate). The basic procedure followed was to
manipulate these variables systematically within the
context of a graded response model-based car
method to evaluate their impact on the operational
characteristics of the CAT.

Initially, item pools having prespecified prop-
erties were constructed and simulated item re-
sponse data were generated according to the graded

response model. The item response data were then
calibrated using the MULTILOG computer program
(Thissen, 1986) to obtain parameter estimates for
the items and 8 estimates for the simulated ex-
aminees (simulees). Next, simulated graded re-
sponse CATs were administered to the simulees.
Finally, comparisons were made among the esti-
mated 0 levels from the CAT method, the § esti-
mates from the initial calibrations of the response
data, and the known 6 levels used to generate the
data. The test lengths and the standard errors of
the 6 estimates obtained under the various CAT con-
ditions were also studied.

Construction of Item Pools

Previous studies by the authors concerning CAT
procedures for other polychotomous models have
shown that smaller item banks can be used than
for cAT procedures using dichotomous items. Spe-
cifically, pools with 60 items have been found to
be more than adequate for successful CAT proce-
dures with polychotomous models. Thus an item
pool size of 60 was used in the present study. In
addition, a 30-item pool size was selected for com-
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parison purposes as a probable lower limit. The
objective was to determine what, if any, deterio-
ration occurred when the 60-item pool was reduced
by half.

The first step in developing the datasets was to
construct a 30-item pool which was intended to
simulate, for example, a set of mathematics word
problems worth 4 points each (scored from 0 to
4). In deciding on the values to set for the known
item parameters, a deliberate attempt was made to
include a wide variety of items whose category
boundaries and discrimination values reflected those
typically obtained from calibrations of real graded
response ability test data. That is, some items had
category boundaries spaced fairly tightly together
while others had widely spaced category bounda-
ries. Also, some items had all negative category
boundaries, some were all positive, and some were
roughly symmetric around the center of the 6 con-
tinuum.

The item discrimination values were specified to
range from .90 to 2.15 (in .05 increments) and
were randomly assigned to the 30 items. Table 1
shows the complete set of known item parameters
for the 30 items. The 60-item pool was created
simply by duplicating the 30-item pool. Each of
the items was specified to have four category
boundaries which formed five response categories;
therefore, the possible item scores ranged from 0
to 4.

The objective in setting the category boundary
and discrimination values was to make them as
realistic as possible based on experience with the
values obtained for item parameter estimates from
real data. A conscious effort was made, however,
to spread the items uniformly across the  contin-
uum as expressed by their category boundaries.
The motivation was to construct item pools with a
roughly uniform distribution of item category
boundary estimates, which has been found to be
ideal in prior research with CAT using multiple-
choice items for cognitive testing.

Simulated Data Generation

The data generation procedure began by select-
ing a z score from a normal (0,1) distribution to

represent the 8 of the simulee along the 6 contin-
uum. Next, the program calculated the probability
of the simulee responding in a particular score cat-
egory or higher for each item based on the known
item parameters. Then, using a random number
generator for a uniform distribution, a value from
0 to 1 was sampled for each simulee for each item.
If the randomly generated value was greater than
the probability of responding in the second cate-
gory or higher according to the model, then the
response to that item was designated as being in
category 1 (reflecting an item score equal to 0). If
the random value was less than or equal to the
model probability, it was compared with the model
probability for category 3 or higher, and so forth.
If the random value was less than the probability
for category 5, then the response was designated
as being in category 5 (an item score equal to 4).

This data generation procedure was repeated for
each of the remaining items in the 60-item pool
for that simulee, and began again for the next ran-
domly selected simulee. The resulting response
strings to the 60 items for 1,000 simulees were to
be used later as input to the MULTILOG parameter
estimation program and for the graded response
CAT procedure. The simulees’ 0 values were to
serve as known parameters against which the pa-
rameter estimates from the calibration and CAT runs
could be compared. The purpose in generating the
data specifically to fit the graded response model
was to study the CAT procedures under ideal con-
ditions. If the CAT methodology performed poorly
1n such circumstances, there would be little reason
to be optimistic about its working with real data.
Estimated item parameters were used rather than
their known values because item parameters are
never known in practice.

Parameter Estimation

The category boundary and discrimination pa-
rameter estimates for the items and 6s for the per-
sons were obtained from MULTILOG (Thissen, 1986),
which was designed to estimate parameters for a
variety of polychotomous item response models
including the graded response model. A minimum
of two computer runs is required to obtain the item

Downloaded from the Digital Conservancy at the University of Minnesota,

May be reproduced with no cost by students and faculty for academic use. Non-academic reproductlon
requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/




Volume 13 Number 2 June 1989
134 APPLIED PSYCHOLOGICAL MEASUREMENT

Table 1
Graded Response Model Rnown Item Parameters
Used for Simulated Data Generation

Item
Number b1 b2 ba b, a

1 S50 1.00 1.50 2.00 .90
2 00 .50 1.00 1.50 1.15
3 -.50 .00 .50 1.00 .40
4 ~.75 ~.25 .25 .75 1.55
5 ~1.00 -.50 .00 .50 1.70
6 -1.50 -1.00 -.50 .00 1.95
7 -2.00 -1.50 -1.00 -.50 .95
8 .00 50 1.00 2.00 1.20
9 -2.00 -1.00 -.50 .00 1.45
10 .19 .38 .75 1.50 1.55
11 -1.50 -.75 -.38 -.19 1.75
12 -1.00 -.50 .50 1.00 2.00
13 -.70 -.20 .20 .70 1.00
14 -2.00 -1.00 .00 1.00 1.25
15 -1.00 .00 1.00 2.00 1.50
16 -1.50 -.50 .50 1.50 1.60
17 -.50 .00 1.00 1.50 1.80
18 ~1.50 ~-1.00 .00 .25 2.05
19 -1.80 -.90 .90 1.80 1.05
20 -.50 .00 1.00 2.00 1.30
21 -2.00 -1.00 .00 .50 1.50
22 -1.75 ~1.25 -.75 -.25 1.60
23 -1.25 -.75 -.25 .25 1.85
24 -.25 25 .75 1.25 2.10
25 .25 75 1.25 1.75 1.10
26 -.50 .00 .75 1.50 1.35
27 -1.50 ~.75 .00 .50 1.55
28 =2.00 -1.00 -.50 50 1.65
29 -.50 50 1.00 2.00 1.90
30 -2.00 -.60 .60 2.00 2.15

and person parameter estimates. In the first run,
the item parameters are estimated using the mar-
ginal maximum likelihood method (Bock & Aitkin,
1981). If the estimation of some of the item pa-
rameters is unsatisfactory, the unacceptable items
are deleted and the first run is repeated. Once sat-
isfactory item parameters are obtained, the person
parameters are estimated in a separate MULTILOG
run using standard maximum likelihood estima-
tion.

MULTILOG was run for the entire matrix of sim-
ulated item response data for 1,000 simulees and

60 items. Based on the authors’ previous experi-
ence with the program and polychotomous models,
it was felt that this number of simulees would be
sufficiently large to obtain stable estimates of the
itemn parameters. As a check on MULTILOG’s ac-
curacy in estimation of known parameters, the es-
timated 8 values were correlated with the known
0 values used to generate the data. The resulting
correlation coefficient was extremely high (r =
.99). Although the correlation between the 6 es-
timates and the known 6 values is not a direct
assessment of MULTILOG's ability to recover known
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item parameters, a high correlation coefficient be-
tween them could not have been obtained if the
itemn parameter estimation had been poor.

CAT Simulations

There are three basic components of CAT sys-
tems: (1) a procedure to estimate 8, (2) an item
selection method, and (3) a stopping rule. The pres-
ent research used the maximum likelihood method
for 6 level estimation in conjunction with the max-
imum information procedure to select appropriate
items for administration. Although Bayesian meth-
ods for 8 estimation and item selection in CAT are
well established for the dichotomous case, no re-
search to date has been reported which applies the
Bayesian approach to the polychotomous case.
Therefore, maximum likelihood estimation was se-
lected for use in the present study.

Two different stopping rules were studied in the
CAT simulations. The test was terminated either
when no item remained in the pool that had at least
a prespecified minimum level of item information
given the current estimate of the simulee’s 8 level,
or when the standard error associated with the 8
estimate fell below a prespecified value. If neither
condition was met after 20 items had been admin-
istered, the CAT was terminated.

Depending on the shape of the information func-
tion for the item pool, the minimum-information
and the minimum-standard-error stopping rules may
lead to different results in terms of (1) the number
of items administered in the CAT and (2) the ac-
curacy of 8 estimation with dichotomously scored
items. If the information function for the item pool
has a uniform distribution, either rule should yield
approximately the same results. However, when
the information function is peaked, different results
may be obtained (Weiss, 1982). For example, the
use of the minimum-standard-error stopping rule
may result in the administration of items that are
inappropriate for individuals with extreme 9 levels
in an attempt to reduce the standard error to the
specified minimum cutoff. On the other hand, the
use of the minimum-information stopping rule is
likely to administer a much shorter CAT to individ-

uals with extreme 8 levels because relatively few
informative items are available to measure such
individuals. Thus both stopping rules were in-
cluded in the present research to investigate their
properties in CAT with polychotomously scored items.
The computer program GRCAT was written to
simulate a procedure for CAT. First, all of the pre-
calibrated item parameter estimates for the items
within a specific pool were stored in a computer
file. Next, 200 simulees were randomly selected
from the original 1,000 who were used for the full-
scale calibrations, because it was thought that a
sample size of 200 would be adequate for evalu-
ation purposes. These same 200 simulees were run
through each of the 12 cAT conditions (explained
in more detail below). For each simulee, the initial
6 estimate was set equal to .10, which was about
in the middle of the difficulty range of both the
30-item and 60-item pools and at which point the
true information of the pools reached a maximum.
Given this initial 6 estimate, item information
was computed for each item in the pool, and the
item with the highest information was selected for
presentation. Thus, everyone was administered the
same first item (of course, this would be neither
necessary nor desirable in practice). Then, the si-
mulee’s original response string was checked to
determine the actual response that had been made
to the item. With maximum likelihood 8 estimation
procedures in the context of the dichotomous item
response models, no estimate of a person’s 8 level
is possible until at least one item is answered cor-
rectly and one is answered incorrectly. Similarly,
with the polychotomous graded response model,
no maximum likelihood 0 estimate is possible after
the first item if the person receives a score in either
the lowest or the highest category. However, a
maximum likelihood estimate may be obtained after
only one item if the response is scored in one of
the middle categories, although the estimate will
be unstable and will have a high standard error.
Also, a person might receive scores of 0 or 4 on
both the first and second items, again precluding
a maximum likelihood § estimate. In such cases,
a systematic procedure must be used to obtain some
preliminary 6 estimate which, in turn, will lead to
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the selection of the next item to be administered.
As soon as an item score other than 0 or 4 occurs,
maximum likelihood estimation may be performed.
In light of the above, the decision was made not
to attempt maximum likelihood 8 estimation until
a simulee received scores in two different cate-
gories.

Given this constraint, three different methods
were used to obtain a new estimate of the 8 level
before computing a maximum likelihood 6 esti-
mate. These three methods were then compared to
determine their impact on the operational charac-
teristics of the cat. In two of the methods, a fixed
stepsize along the 8 scale (either .40 or .70) was
used after the first item to obtain the next estimate
of § for the simulee. Based on previous experi-
mentation, the CAT algorithm used a rule in which
the initial 6 estimate was decreased by the fixed
stepsize for category scores of 0 or 1 and was
increased by the stepsize for category scores of 2,
3, or 4. The other method used a variable-stepsize
technique in which the estimate of 9, after the first
item, was set halfway on the 8 scale between the
initial 8 estimate and the highest category boundary
value for any item in the pool if the score was 2,
3, or 4, or the lowest category boundary value if
the score was O or 1. The highest category boundary
estimate was +3.65 and the lowest was —3.41.

For this new © estimate, the pool was again
searched for the item with maximum information;
the most informative item was then presented. As
before, the original response string for the simulee
was checked for the actual category score on the
item. If the scores on the first two items were still
the same, the stepsize methods were used again:
The fixed-stepsize techniques changed the estimate
of 6 by plus or minus the stepsize depending on
the score, while the variable-stepsize technique again
set the new 8 estimate at a value halfway between
the previous 9 estimate and the highest or lowest
category boundary value in the item pool.

As soon as two different responses were made,
the log likelihood function of the response string
was calculated. The point on the 8 scale at which
the likelihood reached a maximum became the new
8 estimate. The procedure was then repeated after

each item until one of the stopping rules was en-
countered. There were two basic conditions for
termination of the car: (1) to stop when no item
remained in the pool (not yet administered) that
had an item information value of at least .50 for
the current § estimate, or when a maximum of 20
items had been administered; or (2) to stop when
the standard error associated with the current 6
estimate dropped below .25, or when a maximum
of 20 items had been administered.

Data Analyses

The data analyses consisted primarily of descrip-
tive statistics, scatterplots, correlations, and re-
peated-measures analyses of variance (ANOVAs).
Also, information functions were computed to
compare the total information for the 30-item and
60-item pools. Descriptive statistics were calcu-
lated to obtain means and standard deviations of
the various 8 estimates, standard errors of estimate,
and test lengths (number of items administered)
produced by the various conditions of the CAT pro-
cedures. Scatterplots and correlations provided in-
formation on the degree to which the various 6
estimates were linearly related to each other and
to the known 8s. Finally, the variables manipulated
to study their effects on the CAT procedures com-
prised a 2 X 3 X 2 design (two item pool sizes,
three stepsize techniques, and two stopping rule
conditions). Therefore, ANOvVAs evaluated the ef-
fects of these factors on the resulting CAT 6 esti-
mates, associated standard errors of estimate, and
test lengths.

Results
Parameter Estimation

MULTILOG was run on the simulated item re-
sponses generated from 1,000 simulees to the 60
items in the pool. After 25 cycles of the program,
parameter estimates had converged for all of the
item category boundaries and item discrimination
values. In addition, 6 estimates were obtained for
all 1,000 simulees. It was not surprising that no
cases of nonconvergence of parameter estimation
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occurred, because the data were generated delib-
erately to fit the graded response model. Table 2
contains a listing of the item parameter estimates
for all 60 items.

Item Pool Information

Figure 3 illustrates the total information obtained
for the 30-item and 60-item pools. Both the true
and the estimated information functions are shown
for each pool. It is interesting to note that the es-
timated item parameters obtained from MULTILOG
resulted in flatter information functions than the
information plot based on the known item param-
eters. This result was not due to systematic under-
estimation of the item discrimination parameters,
however. Rather, the negative category boundaries
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tended to be underestimated whereas the positive
category boundaries tended to be overestimated.
However, the curves are generally quite similar in
shape; this provides some evidence of MULTILOG’s
capability to recover known item parameters.
Figure 3 shows that the item pool information
functions, regardiess of size, had roughly the same
shape, as would be expected. Despite the attempt
to develop item pools having somewhat uniform
distributions of information, both pools had fairly
peaked information functions. The information was
roughly constant in the range from —1 to +1 on
the § scale, but it dropped off rapidly outside these
limits; relatively little information was available
below § = —3 orabove 8§ = + 3. The information
functions were symmetric around O and reached
their maximum at approximately 6 = —.10. As
was expected from the summative property of in-

Table 2
Graded Response Model Item Parameter Estimates for the 60-Item Pool
Item Item
Number b, b, b, b, a Number b, b, b, b, a

1 77 1.48 2.32 2.97 1.04 31 .92 1.80 2.48 3.39 .94
2 17 1.00 1.76 2.65 1.21 32 .19 1.09 1.98 2.82 1.08
3 -.75 .06 .94 1.83 1.43 33 -.73 .12 .94 1.86 1.40
4 -1.23 -.33 .54 1.35 1.61 34 -1.20 -.32 .57 1.42 1.54
5 -1.65 -.84 -.03 .95 1.51 35 -=1.63 -, 81 .05 .98 1.71
6 -2.67 -1.62 -.77 .13 1.83 36 =2.42 -1.57 -.78 .16 1.91
7 -3.14 =2.37 -~l.61 -.73 .92 37 -=3.24 -=2.54 -1.74 -.85 .96
8 0L 97 1.7¢9 3.52 1.14 38 .12 .99 1.83 3.57 1.18
9 -3.17 -1.51 -.70 .19 1.43 39 -3.03 ~1.50 -.75 03 1.57
10 .35 .66 1.39 2.81 1.41 40 .33 .78 1.45 2.69 1.52
11 -2.36 =1.20 -.61 -.30 1.79 41  -2.42 -1.20 -.57 -.25 1.79
12 -1.67 -.82 .95 1.81 1.93 42  ~1.59 -.79 1.02 1.76 2.04
13 -1.14 -.20 .58 1.54 .83 43 -1,20 -, 34 .32 1.14 1.03
14 -3.30 -1.70 .02 1.76 1.28 44  ~3.346 -1.61 .12 1.92 1.21
15 -1.73 .06 1.74 3.65 1.39 45 =1.47 .10 1.79 3.46 1.53
16 -2.47 -.83 .95 2.54 1.52 46  =2.42 -, 77 1.01 2.63 1.63
17 ~.83 .01 1.80 2.60 1.7¢9 47 -.80 .17 1.83 2.55 1.83
18 -2.43 -1.53 .11 .52 2.04 48 ~2.36 =1.65 .04 47 2.16
19 -2.87 =l.44 1.61 3.06 1.08 49 -2.86 -1.49 1.63 2.99 1.03
20 -.81 .16 1.86 3.62 1.20 50 ~-.80 .01 1.80 3.46 1.30
21 -3.24 ~1.60 .22 1.04 1.56 51 -3.41 -1.67 .06 .78 1.49
22 -2.86 =2.02 ~1.26 -.31 1.47 52 -2.87 ~1.97 -1.12 -.32 1.50
23 -2,08 -1.25 -.24 .56 1.75 53 ~2.01 -1.15 -.33 .54 1.90
24 -.37 .53 1.36 2.26 2.06 54 -.28 57 1.38 2.19 2.15
25 .50 1.30 2.23 3.14 .99 55 .51 1.37 2.20 2.99 1.17
26 -, 66 .11 1.18 2.46 1.37 56 =74 .09 1.31 2.54 1.37
27 -2.45 -1.18 .08 .98 1.53 57 -2.49 -1.22 .19 .96 1.51
28 -3.08 -1.61 -.82 85 1.71 58 -3.08 ~1.58 -, 66 .96 1.71
29 -.85 .99 1.77 3.42 1.74 59 -.77 .91 1.70 3.28 1.90
30 -3.30 -1.02 1.12 3.46 2.04 60 -3.06 -.92 1.10 3.45 2.08
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Figure 3
True and Estimated Item Pool Information Functions
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formation, the total information of the 60-item pool
was about twice that of the 30-item pool.

CAT Simulations

Descriptive statistics. The combinations of the
levels of the three factors studied produced a total
of 12 caT experimental conditions. Separately for
each of these conditions, the same subsample of
200 simulees selected from the original calibration
sample was run through the simulated CAT proce-
dures. The assumption was made that 200 simulees
would be a sufficiently large number to compare
the 12 caT conditions rather than using the full
calibration sample of 1,000. Across the CAT con-
ditions, 12 6 estimates were obtained for each si-
mulee, as well as 12 standard errors of estimate
and 12 test lengths. Table 3 presents descriptive
statistics for each of these 12 CAT conditions.

Nonconvergence cases. Under one or more of
the cAt experimental conditions, nonconvergence
of 8 estimation occurred for 66 simulees. However,
under any one of the CAT conditions, nonconverg-
ence frequencies ranged from 4 to 28. Therefore,
complete data across all 12 conditions were avail-
able for only 134 out of the 200 simulees. Table

4 summarizes the nonconvergence rates across the
12 cat conditions. As can be seen in the table, the
use of the minimum-standard-error stopping rule
reduced the nonconvergence problem substan-
tially.

The occurrence of nonconvergent cases was par-
ticularly a problem when using the minimum-item-
information stopping rule. For persons with very
high or very low known 8 levels, the CAT 6 esti-
mates moved toward the extremes of the item pools
after relatively few items had been administered.
Furthermore, few items were available in these ex-
tremes that had sufficient information to meet the
.50 criterion to be administered; thus the majority
of the simulees with extreme known 8s were ad-
ministered only five or six items. Therefore, the
CAT terminated prematurely before stable 6 esti-
mates were obtained. This result occurred regard-
less of the stepsize method or the item pool size
used.

The nonconvergent cases with known 9 levels
in the middle of the 8 scale received extreme 6
estimates due to one of two reasons. First, some
of the nonconvergent cases resulted because the
simulees responded in the same category to the first
four or five items that were administered. Thus the
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Table 3
Descriptive Statistics for Graded
Response Model CAT Procedures Under
12 Experimental Conditions Defined By
Item Pool Size, Stopping Rule, and
Stepsize Method (N = 134)

Stepsize Method

Dependent Fixed Fixed
Variable .40 .70 Variable
30 Items, Minimum Information
Est. #§
Mean .359 .350 L343
SD 1.374 1.305 1.391
S.E.
Mean .246 .242 .246
SD .063 .054 .059
No. Items
Mean 17.418 17.522 17.254
SD 3.293 3.188 3.426
30 Items, Minimum Standard Error
Est. ¢
Mean .315 .302 .324
SD 1.207 1.211 1.208
S.E.
Mean . 246 . 246 .246
SD .006 .006 .006
No. Items
Mean 15.552 15.500 15.463
SD 1.417 1.353 1.402
60 Items, Minimum Information
Est. ¢
Mean .316 .297 .314
SD 1.232 1.214 1.251
S.E.
Mean .210 .209 .210
SD .016 .015 .020
No. Items
Mean 19.836 19.784 19.724

SD .806 .984 1.312

60 Items, Minimum Standard Error
Est. ¢
Mean .290 .300 .286
SD 1.208 1.201 1.226
S.E.
Mean . 244 . 245 . 245
SD .005 .004 .003
No. Items
Mean 14.515 14.321 14,284

SD 1.296 1.205 1.128

use of the stepsize methods led to extreme ¢ esti-
mates for which there were few informative items
available to administer. In effect the § estimates

stepped out of the range of the item pool. Second,
in some cases the likelihood function was flat due
to inconsistent responses to the items administered.

Under the minimum-standard-error stopping rule,
the few nonconvergent cases that occurred involved
simulees who had extreme known 6 levels. In each
of these cases the length of the CAT was 20 items.
Thus all of the nonconvergent cases that occurred
under the minimum-standard-error stopping rule
were the result of allowing only 20 items to be
administered. If the CAT were not arbitrarily stopped
after a maximum of 20 items, perhaps the admin-
istration of additional items would have resulted in
convergent estimates for these few cases. Collec-
tively, these results showed that nonconvergence
of maximum likelihood estimation was a substan-
tial problem when using the minimum-information
stopping rule, but not when using the minimum-
standard-error stopping rule.

Intercorrelations of 8s. All of the intercorre-
lations among the 6 estimates from the 12 cAT
conditions, the MULTILOG calibrations, and the known
6s were very high, and the scatterplots revealed
relationships that were essentially linear. None of
the correlations was lower than r = .90, and the
great majority were r = .95 or higher. The cor-
relations of the estimated 8s from all 12 CAT con-
ditions with the known 8s ranged from r = .91 to

= .98. Of these, the correlations were lowest for
the 30-item pool using the minimum-information
stopping rule. All correlations were based on the
134 simulees for whom complete data were avail-
able.

ANOVAs. Three separate ANOVAS were rum to
examine any mean differences that resulted among
the estimated s, standard errors of estimate, and
number of items administered under the 12 caT
conditions. Each ANOVA was a 2 X3 X 2 re-
peated-measures design because the same 134 si-
mulees were tested under each of the 12 CAT con-
ditions.

The aNOvAs showed no statistically significant
main effects or interactions for the estimated 6s.
The means of the 6 estimates observed under all
12 cat conditions were essentially the same.

The analyses for the standard-error variable re-
vealed significant main effects for item pool size
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Table &
Frequencies of Nonconvergence Cases Under
12 CAT Conditions (N = 200)

Stepsize Method

Number of Items Fixed Fixed

and Stopping Rule .40 .70 Variable
30 Items, Minimum Information 22 28 16

30 Items, Minimum Standard Error 6 5 5

60 Items, Minimum Information 13 14 26

60 Items, Minimum Standard Error 5 4 4

and for type of stopping rule used (p < .0001).
Also, there was a significant two-way interaction
found between item pool size and stopping rule
(p < .0001), thus precluding discussion of the main
effects. Simple main-effects analysis showed that
the mean standard error of estimate was signifi-
cantly lower (p < .0001) for the 60-item pool when
the information-cutoff stopping rule was em-
ployed; however, there were no differences among
the remaining three conditions. The cell means for
this interaction are presented in Table 5.

Based on the number-of-items-administered de-
pendent variable, the results revealed significant
main effects for item pool size (p < .0001), step-
size method (p < .001), and type of stopping rule
(p < .0001). However, these main effects will not
be discussed because two-way interactions were
found between item pool size and stopping rule
(p <.0001) and between stepsize method and
stopping rule (p < .05). Simple main-effects anal-
ysis of the item pool size and stopping rule inter-

Table 5
Mean Standard Errors for CAT Trait
Estimates and Mean Number of Items
Administered for Minimum-Information and
Minimum-Standard-Error Stopping Rule,
by Item Pool Size (N = 134)

Item Pool Size

Stopping Rule 30 60
Mean Standard Error
Minimum Information .24 .21
Minimum Standard Error .25 .24
Mean Number of Items
Minimum Information 17.40 19.78
Minimum Standard Error 15.51 14.37

action showed that ali four cell means differed from
each other. As Table 5 shows, the mean number
of items administered was highest for the 60-item
pool using the minimum-information stopping rule
and lowest for the 60-item pool using the mini-
mum-standard-error stopping rule. Regarding the
stepsize method X stopping rule interaction, sim-
ple main-effects analyses indicated that the mean
number of items administered using the minimum-
information stopping rule was greater than that for
the minimum-standard-error stopping rule in each
of the three stepsize conditions, as shown in Table
6. No other mean differences were significant.

In considering the significant mean differences
described above, it is important to note that the
very large number of degrees of freedom for the
error terms in the ANOVA F tests (133 or 266, de-
pending on the particular F test) provided a great
deal of power. Thus, relatively small mean differ-
ences were still found to be statistically significant.

Finally, the mean number of items administered
was smaller for the 30-item pool than for the 60-
item pool and was smaller for the standard-error
stopping rule than for the information-cutoff stop-
ping rule.

Discussion

In general, the graded response CAT procedure
performed reasonably well except for the substan-
tial nonconvergence problems encountered under
certain conditions. That is, the frequency of non-
convergence of § estimation was particularly high
when the minimum-information stopping rule was
used. The major problem was that at the extremes
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Table 6
Mean Number of Items Administered During CAT:
Stopping Rule by Stepsize Method (N = 134)

Stepsize Method

Fixed . Fixed
Stopping Rule .40 .70 Variable
Minimum Information 18.63 18.65 18.49
Minimum Standard Error 15.03 14.91 14 .87

of the 6 scale, relatively few items were available
to be administered that had sufficiently high amounts
of information to meet the .50 cutoff. Thus the caT
procedures terminated prematurely before stable 6
estimates were obtained. The use of the standard-
error stopping rule virtually eliminated noncon-
vergence problems.

Another approach to deal with nonconvergence
of 0 estimation would be to employ a Bayesian
estimation procedure rather than maximum likeli-
hood estimation. However, in CAT research with
dichotomous item responses, it is well known that
biased 8 estimates (toward the mean of the prior
distribution) are obtained under Bayesian estima-
tion procedures. Alternatively, some researchers
(Weiss, 1982) have suggested a strategy in which
Bayesian estimation is used for the first several
items of the cAT until maximum likelihood esti-
mation is possible, in which case the procedure
switches to maximum likelihood estimation for the
remainder of the CAT. Future CAT research should
investigate the utility of these approaches in dealing
with the nonconvergence problems for the poly-
chotomous case.

Nonconvergence problems aside, however, the
graded response CAT procedures performed well
based on the simulees for whom 6 estimates were
obtained. Under all 12 conditions, the correspon-
dence was very high among the 8s estimated from
the adaptive procedures, the MULTILOG-calibrated
s, and the known 6s. These results were partic-
ularly impressive in light of the relatively small
item pool (only 30 items) used in six of the CAT
conditions. The results also did not differ when the
item pool size was doubled.

1t has usually been recommended that item pools
should consist of at least 100 items for CAT pro-

cedures using the three-parameter logistic model
for dichotomous item responses (Urry, 1977).
McKinley and Reckase (1983), however, obtained
fairly good results using the simple Rasch model
with a pool of only 40 mathematics achievement
items. The main issue seems to be whether the item
pools have adequate numbers of items whose lo-
cation parameters are equally distributed across the
entire range of the 8 scale used. In such conditions,
there will be sufficient information available to ad-
minister informative items to examinees with rel-
atively high or low § levels.

The results of the present research with the graded
response model suggest that it may be possible to
implement CAT successfully using item pools that
are substantially smaller than the pools required for
dichotomous items. The apparent reason is that
polychotomous scoring of items provides more in-
formation across the full range of the 8 scale, which
reduces the possibility that gaps will occur in the
pool.

Regarding the effects of item pool size on CAT
performance, it was not surprising to find that the
60-item pool produced smaller standard errors than
the 30-item pool when using the minimum-infor-
mation stopping rule. With so many items in the
pool, numerous appropriate and informative items
were available for administration across the levels
of 8. The results also showed, however, that cat
procedures based on the graded response model
still performed well with the 30-item pool; very
little improvement was achieved through doubling
the pool to 60 items. Because a cutoff value of
.250 was used under the minimum-standard-error
stopping rule, the means of the standard errors of
6 estimates were just below the cutoff value for
both the 30-item and 60-item pools. On the aver-
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age, however, one additional item was adminis-
tered with the 30-item pool to achieve the same
standard error level as the 60-item pool.

The results of the present research indicated that
the type of stepsize method, whether fixed or var-
iable, makes little difference in CAT applications
with the graded response model. Regardless of the
stepsize method used, the standard errors were about
the same, as were the number of items administered
and the rates of nonconvergence. However, step-
size method might be an issue depending on the
specific characteristics of the item pool being used.

The present findings suggest several guidelines
for graded response CAT procedures. First, item
pools with as few as 30 items will probably be
adequate, although item pools with a uniform dis-
tribution of information will perform better (and
have fewer nonconvergence problems) than peaked-
information item pools. Second, the variable-step-
size method, being more flexible and more gen-
erally applicable than the fixed-stepsize method, is
the method of choice. Third, the minimum-stan-
dard-error stopping rule will outperform the min-
imum-information stopping rule in terms of the
mean number of items administered, frequencies
of nonconvergence, and correlations of CAT 6 es-
timates with MULTILOG full-scale 0 estimates and
the known 6s.

The graded response model offers considerable
potential for CaT applications. Previous research
has shown that other polychotomous item response
models perform well in CAT procedures under a
variety of conditions using both simulated and real
data. The present study extends that research to the
graded response model.

Perhaps the most interesting and important result
of the present research for practical applications is
the finding that substantially smaller item pools can
be used successfully for polychotomous CAT com-
pared to those required for dichotomous CAT. This
result offers the possibility of implementing CAT
versions of attitude scales which typically consist
of 30 or fewer items. Moreover, the development
of innovative multiple-response-category item for-
mats for measuring cognitive abilities may lead to
polychotomous CATs which could be implemented
with relatively small item pools.

Practitioners as well as researchers have ex-
pressed concerns to the authors at professional
meetings that adaptive testing procedures based on
simple models for dichotomously scored items are
already complicated, and that more complex item
response models will further complicate the caT
procedures. The evidence from the present study
suggests that such pessimism is unjustified. The
present results should encourage more researchers
to try out item response models for polychoto-
mously scored items in the context of adaptive test-
ing.

A cart system based on the graded response model
could prove particularly useful in academic areas
such as mathematics, physics, chemistry, and en-
gineering because tests in these areas typically con-
sist of word problems which are scored in a po-
Iychotomous fashion to reflect partially correct
solutions to the problems. Attitude scales, person-
ality instruments, and interest inventories consist-
ing of items that are polychotomously scored to
represent varying degrees of the trait measured by
the instrument could also be administered adap-
tively with the procedures outlined in the present
research. The practitioner using adaptive testing in
these areas should be able to assess an individual’s
trait level quite efficiently and accurately with rel-
atively few items.

References

Andrich, D. (1978a). Application of a psychometric rat-
ing model to ordered categories which are scored with
successive integers. Applied Psychological Measure-
ment, 2, 581-594.

Andrich, D. (1978b). A rating formulation for ordered
response categories. Psychometrika, 43, 561-573.
Birnbaum, A. (1968). Some latent trait models and their
use in inferring an examinee’s ability. In F. M. Lord
& M. R. Novick, Statistical theories of mental test

scores. Reading MA: Addison-Wesley.

Bock, R. D. (1972). Estimating item parameters and
latent abilitics when responses are scored in two or
more nominal categories. Psychometrika, 37, 29-51.

Bock, R. D., & Aitkin, M. (1981). Marginal maximum
likelihood estimation of item parameters: Application
of an M algorithm. Psychometrika, 46, 443—459.

De Ayala, R. J., & Koch, W. R. (1987, April). Com-
puterized adaptive testing: A comparison of the nom-
inal response model and the three-parameter logistic

Downloaded from the Digital Conservancy at the University of Minnesota,
May be reproduced with no cost by students and faculty for academic use. Non-academic reproductlon
requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/




B. G. DODD, W. R. KOCH, and R. J. DE AYALA

ADAPTIVE TESTING WITH THE GRADED RESPONSE MODEL 143

model. Paper presented at the annual meeting of the
National Council on Measurement in Education,
Washington DC.

Dodd, B. G. (1985). Attitude scaling: A comparison of
the graded response and partial credit latent trait models
(Doctoral dissertation, University of Texas at Austin,
1984). Dissertation Abstracts International, 45, 2074A.

Dodd, B. G. (1987, April). Computerized adaptive test-
ing with the rating scale model. Paper presented at
the Fourth International Objective Measurement
Workshop, Chicago.

Koch, W. R. (1983). Likert scaling using the graded
response latent trait model. Applied Psychological
Measurement, 7, 15-32.

Koch, W. R., & Dodd, B. G. (1985, April). Comput-
erized adaptive attitude measurement. Paper presented
at the annual meeting of the American Educational
Research Association, Chicago.

Koch, W.R., & Dodd, B. G. (in press). An investigation
of procedures for computerized adaptive testing using
partial credit scoring. Applied Measurement in Edu-
cation.

Masters, G. N. (1982). A Rasch model for partial credit
scoring. Psychometrika, 47, 149-174.

McKinley, R. L., & Reckase, M. D. (1983). An eval-
uation of one- and three-parameter logistic tailored
testing procedures for use with small item pools (Re-
search Report ONR83-1). Towa City IA: American
College Testing Program.

Reckase, M. D. (1981). Final report: Procedures for
criterion referenced tailored testing. Columbia MO:
University of Missouri.

Samejima, F. (1969). Estimation of latent ability using
a response pattern of graded scores. Psychometrika
Monograph Supplement, No. 17.

Samejima, F. (1976). Graded response model of the
latent trait theory and tailored testing. In C. K. Clark
(Ed.), Proceedings of the First Conference on Com-
puterized Adaptive Testing. Washington DC: U.S.
Government Printing Office.

Thissen, D. (1986). MULTILOG Version 5 user’s guide.
Mooresville IN: Scientific Software, Inc.

Urry, V. W. (1977). Tailored testing: A successful ap-
plication of latent trait theory. Journal of Educational
Measurement, 14, 181-196.

Weiss, D. J. (1981). Final report: Computerized adap-
tive ability testing. Minneapolis: University of Min-
nesota.

Weiss, D. J. (1982). Improving measurement quality
and efficiency with adaptive testing. Applied Psycho-
logical Measurement, 6, 473-492.

Weiss, D. J. (1983). Final report: Computer-based mea-
surement of intellectual capabilities. Minneapolis:
University of Minnesota.

Weiss, D. J. (1985). Final report: Computerized adap-
tive measurement of achievement and ability. Min-
neapolis: University of Minnesota.

Aunthor’s Address

Send requests for reprints or further information to Bar-
bara G. Dodd, Measurement and Evaluation Center,
University of Texas, Austin TX 78713, U.S.A.

Downloaded from the Digital Conservancy at the University of Minnesota,

May be reproduced with no cost by students and faculty for academic use. Non-academic reproductlon
requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/




