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A study was conducted to evaluate four goodness-
of-fit procedures using data simulation techniques. The
procedures were evaluated using data generated ac-
cording to three different item response theory models
and a factor analytic model. Three different distribu-
tions of ability were used, as were three different sam-
ple sizes. It was concluded that the likelihood ratio

chi-square procedure yielded the fewest erroneous re-
jections of the hypothesis of fit, whereas Bock’s chi-
square procedure yielded the fewest erroneous accep-
tances of fit. It was found that sample sizes some-
where between 500 and 1,000 were best. Shifts in the
mean of the ability distribution were found to cause
minor fluctuations, but they did not appear to be a
major issue.

Item response theory (IRT) is becoming a widely
used psychometric tool, with applications ranging
from item banking to equating to adaptive testing.
IRT models offer many advantages over more tra-
ditional test analysis procedures. However, these
advantages are gained at the expense of making
rather strong assumptions about the nature of the
data. It is widely recognized that these assumptions
are unlikely to be fully met in practice. Although
in some respects IRT models appear to be robust
with respect to the violation of these assumptions, 9
it is clear that in many instances the violation of

these assumptions has profound implications for
the application of IRT methodology.

Because of the strong assumptions required for
the use of IRT and the fact that the advantages
associated with the use of IRT may not be fully
realized if these assumptions are not met, it is im-
portant that prospective users of IRT methodology
assess the appropriateness of IRT for use in in-
tended applications. One way in which this can be
done is by conducting a goodness-of-fit study.
Broadly defined, a goodness-of-fit study is the eval-
uation of the similarity between observed and ex-
pected (predicted) outcomes. Within the context of
IRT, this typically involves (1) estimating the pa-
rameters of an IRT model, (2) using those param-
eter estimates to predict, by way of the IRT model,
examinee response patterns, and (3) comparing the
predicted response patterns to actual observed ex-
aminee response patterns.
A number of procedures have been proposed in

the literature for assessing the goodness of fit of
IRT models to data. Unfortunately, there is little
information available to assist in the selection or

evaluation of such procedures. Data are not gen-
erally available regarding the performance of the
various procedures under different conditions, nor
are criteria available for selecting among the com-
peting alternative goodness-of-fit procedures.
The purpose of this research was to investigate

a number of goodness-of-fit procedures to assess
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their adequacy for assessing the degree to which
the more popular IRT models fit data. This was

.accomplished by generating simulated test data with
known properties. The parameters of the three most
popular IRT models-the one-parameter logistic,
the two-parameter logistic, and the three-parameter
logistic models-were estimated, and several
goodness-of-fit procedures were applied to the re-
suIts. The accuracy with which the procedures
identified known fit and misfit were then evaluated.

Goodness-of=Fit Statistics

The focus of this research was on the goodness
of fit of specific IRT models, as opposed to specific
aspects of fit, such as local independence. Al-

though there have been some procedures proposed
for assessing local independence (e.g., Rosen-

baum, 1994), these procedures have largely fo-
cused on assessing whether any IRT model is ap-
propriate, rather than on whether a specific model
fits the data. Note, for instance, that the Rosen-
baum procedure not only fails to utilize IRT model
parameters, but the procedure precludes the use of
model parameters. Therefore, these procedures were
not included in this study. Rather, only statistics
that could be used to evaluate the fit of a specific
model, or to compare the fit of two models, were
included.

After a review of the literature, four goodness-
of-fit procedures were selected for this research.
All of the procedures selected lend themselves to
chi-square analyses, and allow the statistical testing
of fit for individual items and for a test as a whole.

Bock’s Chi-Square

Bock’s chi-square (BCHI) procedure (~&reg;clc9 1972)
involves computing a chi-square statistic for each
item in the following manner. First, the ability
scale is divided into J intervals so that roughly
equal numbers of examinees are placed into each
interval. Each examinee is then assigned to one of
the 2 x J cells on the basis of the examinee’s abil-

ity estimate and whether the examinee answered
the item of interest correctly or incorrectly. For
each interval the observed and predicted propor-

tion-correct and proportion-incorrect scores are

computed and used to form a chi-square statistic.
The predicted value for an interval for a given item
~~~~~ is computed using the median of the ability
estimates falling within the interval and the item
parameter estimates for that item using the IRT
model. The BCHI statistic for item a is given by

where is the observed proportion-correct on item
i for interval j, and

Nj is the number of examinees with ability
estimates falling within interval j.

To test the significance of an item’s lack of fit, J
- m degrees of freedom are used, where yrc is the
number of item parameters estimated.

Yen’s CM-Square

Yen’s chi-square (YCHI) procedure (Yen, 1981)
is the same as the BCHI procedure with two ex-
ceptions. First, the YCHI procedure uses 10 inter-
vals, whereas the BCHI procedure does not specify
a specific number of intervals. Second, the pre-
dicted score Eij is computed as the mean of the
predicted probabilities of a correct response for the
examinees within an interval. The YCHI statistic

is given by Equation 1 with ~ = 10. The degrees
of freedom are IO - m.

and Mead
CM-Square

The Wright and Mead chi-square (WCHI) pro-
cedure was first proposed by Wight and Mead
(1977). It is identical to the YCHI procedure with
three exceptions. First, the procedure is based on
number-correct score groups (i.e., the one-param-
eter logistic model) rather than on intervals of the
ability scale. Second, rather than using 10 inter-
v~ls 9 the WCHI procedure requires that six or fewer
score groups be used. This is accomplished by col-
lapsing adjacent number-correct score groups until
there are six or fewer groups, while maintaining a
roughly uniform number of examinees across groups.
Third, the chi-square statistic that is computed is
modified to correct for the theoretical variance of
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the predicted probabilities of a correct response
within a score group (due to examinees of different
abilities being in the same interval).
To use this procedure with IRT models other

than the one-parameter logistic an&reg;del9 ~en (1981)
modified it by substituting the grouping method of
the YCHI procedure for the number-correct group-
ing approach. This resulted in within-group ability
estimate variances similar in magnitude to those
produced by the number-correct score group method
using the one-parameter data. The WCHI statistic
is given by

J ~T //>, - , ,

where

Pi(Oj) is the predicted proportion correctly answer-
ing item in score group k, and the other terms are
as previously defined. The degrees of freedom are
,T - m.

Likelihood Ratio

CM-Square
The likelihood ratio chi-square (LCHI) proce-

dure follows much the same pattern as the YCHI

procedure. The ability scale is divided into 10 in-
tervals in such a way as to result in roughly equal
numbers of examinees having ability estimates fall-
ing within the intervals. The examinees are sorted
into 1 of 20 cells based on their ability estimates
and their item responses. A 10 x 2 contingency
table is formed, and a likelihood ratio chi-square
statistic (Bishop, Fienberg, & Holland, 1975) is

computed.
The LCHI statistic is given by

where ln(x) is the logarithm to the base e &reg;f x, and
the remaining terms are as previously defined. The
degrees of freedom are 10 - ~a e

Method
’ The Simulation
of Test Data

In all, 36 tests were simulated, each composed
of 75 items. Nine tests were simulated to fit each

of four models: (1) the one-parameter logistic (1PL)
model, (2) the two-parameter logistic (2PL) model,
(3) the three-parameter logistic (3PL) model, and,
(4) a two-factor linear (LIN) model. The nine tests
simulated for each model were composed of three
tests at each of three sample sizes-500, 1,000,
and 2,000 cases, The three tests with a given sam-
ple size varied on the mean ability of the simulated
examinees. There was a low ability group (ability
centered about one standard deviation below the
mean item difficulty), a centered ability group (ability
centered at the mean of the item difficulties), and
a high ability group (ability centered about one
standard deviation above the mean item difficulty).
The item parameters used to simulate the one-,

two-, and three-parameter data were selected as
follows. All of the item parameters were selected
from uniform distributions having the ranges shown
in Table 1. The same b values were used for all
datasets. The same a values were used for all two-

and three-parameter datasets. For all one-parameter
datasets a value of 1.0 was used for all c~ values.

For all one- and two-parameter datasets a value of
0.0 was used for all c values.

The 0 parameters used for the one-, two-, and

three-parameter data were selected as follows. All
Os were randomly selected from a standard normal
distribution. First, 500 Os were selected and used
for the N = 500 datasets. For the liT = 19000 da-
tasets an additional 500 Os were selected and com-

bined with the 500 Os previously selected. Like-
wise, for the hl = 2,000 datasets an additional 1,000
Os were selected and combined with those already
selected. Note that the low ability groups were
simulated by subtracting 1.0 from all of the Os,
whereas the high ability groups were simulated by
adding 1.0 to all of the Os.
The LIN data were generated using the proce-

dure described by Wherry, Naylor, Wherry, and
Fallis (1965), vvhich is based on the linear factor
analysis model. The procedure forms a multidi-
mensional variable as a weighted sum of indepen-
dent, normally distributed random variables, and
then dichotomizes the variable to give the desired
proportion correct. Groups with different mean
abilities were simulated by shifting the mean of the
target proportion-correct scores of the items. The
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Table 1

Ranges of Item Parameter Distributions

target mean total test proportion-correct scores for
the three ability groups were p = .3’~~, p = .500,
and p = .625. Items 1-37 had factor loadings of
.70 on the first factor and .20 on the second factor,
whereas items 38-75 had loadings of .20 on the
first factor and .70 on the second factor.

Calibration

The data for all conditions were calibrated for

the one-, two-, and three-parameter models using
LOGIST ~~li~~~rs~y9 ~ &reg;n, ~ Lord, 1982). For
the one- and two-parameter models, all c values
were held constant at 0.0. For the one-parameter
model the a values were held constant at .588 (1.0/
1.7). However, this value was modified due to the

rescaling, and as a result, different values of a were
obtained for each dataset.

Analyses

The four goodness-of-fit procedures were ap-
plied to each of the simulation datasets. The results
were then inspected to determine whether the pro-
cedures performed satisfactorily. That is, it was

determined whether the procedures could be used
to discriminate cases of fit (such as the three-pa-
rameter calibration of the one-parameter data) from
cases of misfit (such as the one-parameter calibra-
tion of multidimensional data).

Two types of errors were investigated in this
study. The first type of error involved the erroneous
conclusion that the model did not fit the data when,
in fact, the data were generated with that model or
a model subsuming the calibration model (e.g., the
two-parameter calibration of one-parameter data).
The second type of error was the erroneous con-
clusion of fit when the calibration model did not
subsume the generation model (e.g., the one-pa-
rameter calibration of three-parameter data).

Results

Table 2 reports summaries of the results obtained
for the goodness-of-fit procedures for the one-,
two-, and three-parameter data. Table 3 contains
a summary of the results obtained for the multi-
dimensional data. The values reported in the tables
are the proportion of items for which there was
significant misfit of the model to the data. Signif-
icance levels of .01 and .05 were used for testing
the significance of the chi-squares for individual
items. Because the two sets of analyses yielded
quite similar patterns of results, only the results for
the .01 analyses are reported. Under the hypothesis
of fit, the proportion of items for which there was
misfit should have been approximately .01.

Table 2 summarizes the results for the one-pa-
rameter data. Since these data were generated to
fit the one-parameter model, it would be expected
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Table 2

Proportion of Items Identified as Misfitting IPL, 2PL, and 3PL
Models for Four Generation Models, Three Ability Distributions,

Three Sample Sizes, and Four Fit Statistics

Note. Decimal points omitted.
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that all three calibration models would yield fit. As
can be seen from Table 2, however, misfit was
shown by all of the chi-square procedures. The
most misfit was shown for the centered ability dis-
tribution and, to some extent, for the largest sample
size. It seems clear from an examination of Table
2 that the values are consistently lower for the
LCHI procedure than for the other procedures, 9
though the level of significance of the differences
is unclear.

Table 2 also summarizes the results obtained for

the chi-square procedures for the two-parameter
data. For these data, fit was expected for the two-
and three-parameter models, but not for the one-
parameter model. As can be seen from Table 2,
all four procedures showed clear differences be-
tween the one-parameter calibrations and the two-
and three-parameter calibrations. There is some lack
of fit for the two- and three-parameter models, es-
pecially for the three-parameter model, but the pro-
portions of items for which there was misfit are
dramatically less than for the one-parameter model,
regardless of which procedure is considered.

In the cases when fit was expected, the LCHI
procedure once again showed consistently lower
values than the other procedures. In the cases when
misfit was expected, the LCHI procedure per-
formed as well or better than the other procedures
for the 500 sample size case, whereas it performed
about as well as the others for the larger sample
size cases.

The results obtained for the three-parameter data
are also shown in Table 2. For these data, only the
three-parameter calibration model was expected to
yield fit. It was expected that the fit for the two-

parameter model would be worse than for the three-

parameter model, but not as bad as for the one-

parameter model. This is the pattern obtained for
all four procedures.

There was some misfit for the three-parameter
model, but at relatively low levels. The least misfit
was indicated by the LCHI procedure. The LCHI
procedure also tended to show less misfit for the
two-parameter model than did the other proce-
dures. There were no clear patterns for the one-

parameter calibrations.

Table 3

Proportions of Items Generated by the Multidimensional Model
Identified as Misfitting IPL, 2PL, and 3PL Models for Three

Ability Levels, Three Sample Sizes, and Four Fit Statistics

~

Note. Decimal points omitted.
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Table 3 shows a summary of the results obtained
for the chi-square procedures for the multidimen-
sional data. For these data, misfit was expected for
all three calibration models. This was the obtained

pattern, though the level of misfit (proportions of
items for which there was misfit) was surprisingly
low for the 500 and 1,000 sample size cases for
the centered ability distribution. This result was
fairly consistent across the four procedures. The
only consistent difference among the fit procedures
for these data was the tendency of the WCHI pro-
cedure to indicate less misfit than the other pro-
cedures, especially for the two- and three-param-
eter calibration models. Nonetheless, in no case

would these results be interpreted as indicating that
the unidimensional models yield adequate fit.

Discussion and Conclusions

Before discussing the results of this study, it will
be helpful if a discussion of goodness of fit as an
issue is presented. This will provide a rationale for
the selection of the statistics for this study and a
context for the discussion of the results.

Goodness of fit is generally recognized as an
important aspect of any model-based psychological
measurement. Certainly, if goodness of fit of a
model to data is not established, the validity of the
use of the model comes into question.

Within the context of IRT, goodness of fit is a
crucial ingredient in the establishment of the ap-
propriateness of any particular model, and of the
use of IRT methodology itself. Despite claims for
the robustness of IRT models, it is clear that misfit
can seriously detract from the validity of IR’f-b~sed
measurements. Robustness cannot simply be as-
sumed. Rather, it must be established in each new
application.

Lack of goodness of fit can occur for several
reasons. For example, the assumptions of the model
may not be met in the data. IRT, like any other
model-based methodology, involves the use of some
rather strong assumptions. Most commonly used
models assume that the complete latent space is

unidimensional, and that local independence there-
fore holds when unidimensional IRT models are

employed. If the data are multidimensional, which
is often the case, local independence may not hold.
IRT models also involve strong assumptions about

the shape of the function relating performance to
latent ability. If the assumed shape of the item
response function (or item characteristic curve) is
incorrect, such as is the case in which the one-

parameter model is used when guessing is a factor
in responses, misfit results.
Even if the assumptions of the model are met,

misfit can result from inadequacies in the estima-
tion process. This can be the result of sample sizes
that are too small, poor estimation algorithms, or
a variety of other problems.

Different procedures for assessing goodness of
fit tend to focus on different aspects of misfit. Some

procedures, for instance, are designed for detecting
violations of local independence and monotonicity
assumptions (e.g., Holland, 1981; lZosenbaum9
1984). Others are designed for and limited to par-
ticular models or estimation algorithms (e.g., An-
dersen, 1973; Bock & Aitken, 1981; Wright ~
Mead, 1977; Wright & Stone, 1979). In this study,
only statistics that could be applied with any IRT
model or estimation algorithm were employed.

For the one-parameter data of this study, all three
models were expected to fit the data. That is, the
proportions of misfitting items were expected to all
be approximately .01 for the three models. As can
be seen in Table 2, to a great extent this was the
observed outcome. However, there were a number
of instances in which the proportions deviated from
the .01 region. Overall, it appeared as though the
LCHI procedure yielded values consistently closer
to 0 1 tha~ were the values for the other procedures.
This would seem to indicate that when the null

hypothesis (fit) is true, the LCHI procedure is least
likely to result in erroneous rejections of the null
hypothesis. This seemed to be true regardless of
sample size, distribution of ability, or calibration
model.

For the two-parameter data, lack of fit was ex-
pected for the one-parameter model calibrations,
but not for the two- and three-parameter calibra-
tions. Again, this was the general observed out-
come, though there were a few cases when pro-

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



56

portions diverged somewhat from the expected value
of 0 1. As was the case for the one-parameter data,
the LCHI procedure appeared to result in the fewest
erroneous rejections of the hypothesis that the model
fit the data. In terms of correct rejections of the
hypothesis of fit, the LCHI and BCHI procedures
appeared to yield marginally higher proportions than
the other two procedures. However, it would be

very difficult, on the basis of these data, to select
one fit procedure over the others.

For the three-parameter data, misfit was ex-

pected for both the one- and two-parameter models, 9
whereas fit was expected for the three-parameter
model. The fit of the two-parameter model was

expected to be somewhat better than the fit of the
one-parameter model. Once again, the observed
outcome closely paralleled the expected outcome.
As was the case with the one- and two-parameter
data, the LCHI procedure yielded the fewest er-
roneous rejections of fit when the three-parameter
data were calibrated using the three-parameter model.
In terms of correct rejections of fit, it would be

very difficult to identify one procedure as perform-
ing better than the others.

All three models were expected to yield lack of
fit to the multidimensional data, and that was, in
fact, the observed outcome. Although there was
no clear pattern in these data, it did appear as though
the BCHI procedure might have yielded, on the
average, slightly higher proportions of correct re-
jections of fit than did the other procedures.

Overall, it appeared as though the selection of
a goodness-of-fit procedure would differ depending
on the type of error considered more serious. The
LCHI procedure appeared to be least likely to result
in erroneous rejections of fit, whereas the BCHI
procedure appeared to yield marginally fewer er-
roneous acceptances of fit.

The following cautions in the interpretation of
these results should be noted. The study addressed
only the issue of fit with nonskewed, normal dis-
tributions of ability. The results do not generalize
beyond this limitation. Nor does this study address
the question of fit for tests of lengths shorter than
75 items, though the results do probably generalize
to longer tests. It should also be noted that the

results for the multidimensional data are based on

a linear model involving two roughly equal factors.
These results may not generalize to multidimen-
sional data in which the factors are not equal, or
in which linearity does not contribute to misfit.

These results must be interpreted in the light of
these limitations, in which case the results appear
fairly clear-cut.

Based on the results of this study, the following
conclusions seem appropriate about the use of these
goodness-of-fit procedures. First, sample sizes of
500 to 1,000 seemed to yield the best results. A
sample of 2,000 seemed to make the fit procedures
too sensitive. Second, shifts in the mean of the

ability distribution caused minor fluctuations, but
did not seem to be a major issue. This does not,
however, address the issue of distribution skewness
or non-normality. Third, the likelihood ratio chi-
square procedure appeared to yield the fewest er-
roneous rejections of the hypothesis of fit, whereas
Bock’ chi-square procedure yielded the fewest er-
roneous conclusions of fit. The procedure of choice
apparently depends on which type of error is con-
sidered to be the more serious error.
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