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Some Applications of Logistic Latent Trait Models
with Linear Constraints on the Parameters

Gerhard H. Fischer and Anton K. Formann

University of Vienna

The linear logistic test model (LLTM), a Rasch
model with linear constraints on the item param-
eters, is described. Three methods of parameter es-
timation are dealt with, giving special consideration
to the conditional maximum likelihood approach,
which provides a basis for the testing of structural
hypotheses regarding item difficulty. Standard
areas of application of the LLTM are surveyed, in-
cluding many references to empirical studies in

item analysis, item bias, and test construction; and
a novel type of application to response-contingent
dynamic processes is presented. Finally, the linear
logistic model with relaxed assumptions (LLRA) for
measuring change is introduced as a special case of
an LLTM; it allows the characterization of individ-
uals in a multidimensional latent space and the

testing of hypotheses regarding effects of treat-
ments.

The widespread use of tests as entrance examinations for schools and universities has greatly
stimulated the further development of test theory in the U.S.A. and has given rise to innovative tech-
nologies of testing based on item response models. In these applications the three-parameter logistic
model has been preferred because its item characteristic curves (ICCS) can be flexibly fitted to a vari-
ety of items and item formats in use. In most European countries, on the contrary, testing has so far
been of only secondary importance in admission to schools or selection of curricula. Testing has been
limited mainly to the traditional domain of psychological diagnostics for the individual. As a conse-
quence, there has been less interest in new testing technologies than in the theoretical foundation of
tests as instruments of psychological research. Latent trait theory in Europe has developed more to-
wards a theory of psychological measurement and towards modeling the process of problem solving,
in which the one-parameter logistic (Rasch) model has played an outstanding role. These research
aims have suggested going beyond the description of response probabilities in terms of item and per-
son parameters, tracing the former back to the influences of the cognitive operations involved and the
at least in to processes.

The present paper deals with a class of linearly restricted logistic models which can be viewed as
formalizations of structural hypotheses regarding the psychological complexity of test items and
which may serve for testing such hypotheses empirically. The most important formal results, a survey
of typical areas of application, and an empirical example of a novel type of application will be given.
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The Rasch Model and Generalizations

The latent trait model introduced by Rasch (1960), called the Rasch model (RM), explains the
probability of a correct response of person a to item as the function of one ability 0, (or Z., respective-
of the individual and of the hi (or easiness of the item: i

for a = 1, ..., N (individuals) and i = 1, ..., M (items), with exp(6J and e, = exp(- bi). Both these
parameterizations will be needed below. It is not possible to deal here with the question whether and
under which conditions the parameters of the RM can be uniquely estimated. (See recent articles on
this topic by Andersen, 1980; Fischer, 1981; Gustafsson, 1980a; Wainer, I~&reg;r~a~~ ~ Gustafsson,
1980). However, it is well known and has been especially stressed by Rasch (1960, 1967) that the item
parameters can be estimated independently of the true values of the person parameters; therefore, the
term &dquo;sample-free&dquo; has come into use in connection with the RM.

The Rasch Model as Measurement

The RM can also be considered a method of conjoint measurement of item and person param-
eters based on the legit-transformed reaction probabilities in a two-way factorial persons x items de-
sign,

The parameters 0. ~~~ y can be interpreted as main effects of persons and items, respectively. The
separability of both of parameters from each other is a consequence of the simple additive conea-
tenation in Equation 2. (For further details on this see Rasch, 1968,1977.) The close analogy of Equa-
tion 2 to an analysis of variance without interactions has suggested a generalization of this additive
model to more than two factors:

where, for example, the parameters aj could be the effects of different points of time of observation
between which learning may have occurred, the fli’s those of different experimental conditions, and,
finally, the M~s the influences of different modes of test presentation. The above-mentioned sepa-
ability of the parameters implies that the parameters of the levels of each single factor can be esti-
mated separately independently of all the other parameters. Such analyses of multifactorial com-
plete designs have already been suggested by Micko (1969, 1970), Falmagne (quoted from Micko,
1970), Scheiblechner (1971) and Kempf (1972); see also the more detailed discussion in Fischer (1974,
pp. 3~0~-~~3)e Since, however, data for this type of complete multifactorial design are rare, the prac-
tical use of this approach is rather limited.’

The Linear Logistic Test h46del

A generalization proposed by Scheiblechner (1972) that has a much broader spectrum of applica-
tions is the so-called linear logistic test model (L~~’~9 it consists of the RM defined in Equation 1
along with the linear restrictions
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Therein the k7i’s denote the basic parameters of the model and the qij’s the weights of the qj’s for each
of the item parameters bi. Depending on the type of application, the basic parameters can be inter-
preted either as the contribution of hypothetical cognitive operations to the total difficulty of the
items, with the ~~;9s being the minimum number of times operation j has to be used for solving item i,
or as the effect parameters of the factor levels in a multifactorial design with design matrix Q. Last
but not least, the qj’s can also be used to describe processes of change in the individuals, as, for ex-
ample, caused by treatments or by practice. How hypotheses can be formulated by means of Q will be
demonstrated in the applications below. The constant c is the usual normalization constant of the
RM. (The bi’s are only defined up to an additive constant).

Parameter Estimation

For estimating the basic parameters, several methods are known, one of which stands out because
of its theoretical advantages, namely, the conditional maximum likelihood (Cb4L) method. As is well
known, the conditional likelihood function of a data matrix U, given the raw scores of the individuals,
is independent of the parameters 0.. As applications of the model to cases of incomplete data will be
discussed below, the conditional likelihood function for incomplete data is given here: i

where U = [(M,J] denotes the usual item-score r~~tr~x9 missing observations are formally represented
by some arbitrary value z~9 0 < u < 1. Further, V = is a matrix with elements vi. = if some re-
sponse of person a to item ! has been observed, and vi. = 0 otherwise; r. = 7- juivi,, is the raw score of
individual c~ and st = ~ uivi. the marginal sum of item ~9 finally, yra denotes the elementary symmetric
function of order r,, of the variables ElVIa, ..., ~n~nQ~ (For further details see Fischer, 1981.) It should be
stressed that the missing observations may not be responses to subjectively difficult items omitted by
the testees but should be due to design. (For the problem of &dquo;omits/’ see Lord, 1980, pp. 226-230).

CML estimates of the basic parameters of the LLTM are obtained by taking the logarithm of the
likelihood defined in Equation 5 and then differentiating with respect to the ~/s.
The estimation equations are

The functions y,,-, in Equation 6 denote, analogously to yr~9 the elementary symmetric functions of
order Ya -1 with the arguments ~~’gCi9 ..., ~q_qS’~_~,Q9 ~y-0~IU’qy4~.ld9 cec9 &euro;~. (Lc., t5h~ 9r~ parameter e, is omitted).
The derivation of these equations can be found in Fischer (1973; 1974, pp. 353-359). A FORTRAN
program using a gradient method has been published by Fischer and Formann (1972; see also
Fischer, 1974, pp. 531-554). Its application is, in general, limited to about 40 items because obtaining
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numerical accuracy of the functions y~Q and Yra-¡ becomes increasingly difficult when n becomes large.
More refined recursion formulae for the elementary symmetric functions admit up to about 80 items
(see Gustafsson, 1980a). In addition, new program versions use the Ncwton-Raphson method by
which a much faster convergence is attained (about five iterations suffice in most cases). The condi-
tions which the data U and the structural matrix Q must jointly fulfill so that the Equations 6 possess
a unique solution have been derived by Fischer (1.982). Since these are rather complicated, they can-
not be stated here. However, in summary, it can be said that the CML method, having a range of up
to 80 items and fast convergence, is suited for most cases in practice.

t~ the unlikely event (1) that there are more than 80 items which conform to the RM and to which
the LLTM can be applied meaningfully and (2) that at least some of the testees have responded to
more than 80 items, a simple alternative for parameter estimation is to maximize the unconditional
likelihood function

The estimation equations resulting for this unconditional maximum likelihood (UML) method are

for the basic parameters (with given person parameters 6J and

for the person parameters (with given person parameters b;). Assuming approximate values for the
person parameters, the system of Equations 8 can be solved for the parameters ~,, a°o9 ?7- by means of
the Neivton-Raphson method; then these solutions can be inserted into Equation 9 in order to solve
each of these equations, one for each vector (v,,, ..., V..) and each raw score ~°a9 for the respective per-
son parameter, These are again substituted into Equation 8, and so forth. ~~th~ number of item pa-
rameters is not too small, the bias of this UML method will be rather slight ~~. Andersen, ~Q’~~9 1980,
p. 244; ~~b~r~~ar~9 1977).

However, this simple UML approach has one serious dr~~b~~i~a The CML method allows the
computation of the conditional likelihood as a function of the ~;’s and the direct comparison of this
with the conditional likelihood function of the ~I~e The former is obtained by inserting the ~j’s into
Equation 5; let the result be denoted byJL(~i, ..., fi-). The latter is obtained by estimating the item
parameters of the RM and inserting these L~’s into Equation 5; let the resulting likelihood function be
denoted byl,~b~9 ..e9 Then, the following likelihood ratio (LR) statistic can be obtained,

which is asymptotically ~-distributed with df = n - I - m as long as the LLTM holds. Hence, the
validity of Equation 4 can be tested in an elegantly simple manner, and, all the more so, as the likeli-
hood functions needed result as a by-product of parameter estimation. Such LR tests, however, are
not known for the UML approach, and it is not likely that they can easily be established because the
unconditional likelihood function depends on the person parameters 0., the number of which tends to
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infinity as /V-~oo. For this reason, the CML method has been used in almost all applications of the
LLTM.

Besides testing the LLTM (as an No) against the RM (as H,~9 other LR tests are also important for
practical applications, for example, to test whether the basic parameters rli are the same in specified
subsamples of individuals or of items. Let the two samples to be compared be denoted by I and Il and
the total sample by T, and let the CML estimates be computed separately for 7, for ~7, and for the to-
tal sample 7&dquo;; then the asymptotic LR test

holds with L defined again as in Equation 5 and with d~° equ~l to the difference of the numbers of in-
dependent parameters in the denominator and in the numerator of Equation 11. This obviously al-
lows the testing of many more types of substantive hypotheses. Furthermore, constraints with differ-
ent numbers of parameters in Equation 4 can be tested against each other. The main interest in ap-
plying the LLTM is thus for testing hypotheses rather than for merely estimating the parameters.

An interesting alternative to the CML and UML approaches is the EM algorithm of Dempster,
Laird, and Rubin (1977), which has recently been adopted for latent trait theory by Bock and Aitkin
(1981) and by Thissen (1982). It requires the specification of some distribution of the O.’s, e.g., a
normal probability density function (pdj). Although a first comparison of CML and EM estimates has
indicated a good correspondence (Thissen, 1982), the main problem with this method again seems to
be the testing of hypotheses: Suppose it is desired to test the No of equal cognitive complexity (i.e.,
equal basic parameters for the cognitive operations) in two different populations (e.~.5 males vs. fe-
males) ; then the assumption of two different normal pdf ’s in these two groups precludes the existence
of one common normals/for the total sample. Therefore, LR tests as described above would not be
feasible.

~y~i~~ Applications of the LLTM

The early applications of the LLTM primarily attempted to explain item difficulty on the basis of
their hypothetical cognitive structures. Scheiblechner (1972) studied the cognitive complexity of cer-
tain propositions of formal logic which were, however, presented in concrete graphical form. It turned
out to be possible to explain item difficulty by means of only three operations (‘6~e~~ti&reg;~,99 ‘gdis~~~~~
tion,&dquo; and &dquo;considering aSy~r~~try99). Spada, Fischer, and ~l~y~~r (1974) analyzed tasks taken from
elementary mechanics; and Fischer (1973) used mathematical problems taught in high school. These
first attempts showed that the LLTM is a useful tool for item analysis but that a good fit of the model
is difficult to attain or, rather, that it is attained only if the item material was constructed carefully
and deliberately, with an eye to the model.

With this in mind, Formann (19~’39 see also Formann & Piswanger, 1979) undertook the con-
struction of a new nonverbal intelligence test similar to Raven’s Progressive Matrices. While retaining
the item format, he systematically designed the items according to predetermined construction rules.
Three factors (or facets) were assumed to be relevant for item difficulty: One factor with the levels
&dquo;continuation,&dquo; &dquo;variation,&dquo; and &dquo;superimposition&dquo; defined the rule that had to be applied by the
subjects; another factor with levels &dquo;horizontal,&dquo; &dquo;vertical,&dquo; and &dquo;horizontal and vertical&dquo; defined
the direction for applying the rule; the third factor with levels &dquo;form,&dquo; &dquo;pattern,&dquo; &dquo;number,&dquo; and
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&dquo;array&dquo; characterized the aspect of the graphic components to which the rule referred. Figure I ilius-
trates the meaning of these three factors. Since the graphic components can be realized by means of a
practically unlimited number of geometric representations (&dquo;form&dquo; can be, e.g., a circle, a triangle, a
square), and since one or several rules can occur simultaneously in an item, the three factors generate
a universe of items which may either be basically different because of their structures or, if they have
the same structure, superficially seem different to the testees because of the graphical components.

Formann’s empirical investigation of a sample of 42 of these items (with two rules each) by means
of the RM proved that these construction rules enabled him to design items with very different diffi-
culty parameters. However, nine items had to be deleted because they did not fit the RM. For the
other items, several hypotheses with different numbers of cognitive operations, even considering in-
teractions between the three factors, were tested using the LLTM and comparing its likelihood with
that of the RM (as Hi). The attempt to explain item difficulty as a function of item structure was only
partially successful, since all the LR tests turned out to be significant. That Ho which assumed the in-
dependence of the three factors, and could thus be interpreted most readily, was regarded as the most
acceptable approximation to the more complex reality. According to this Ho, the difficulty of each
item is an additive combination of the parameters of the respective rules, of those of the required di-
rections, and of those of the relevant properties, independent of the specific combinations of the fac-
tor levels of the three facets rule, direction, and relevant property.

1
The Rules for Constructing the Matrices Items Illustrated by Four Items,

Three Consisting of One Component&horbar;(a) Continuation, Array,
Horizontal, (b) Variation, Pattern, Horizontal & Vertical, (c) Super-

imposition, Form, Vertical-and One Comprising Two Components-
(d) Variation, Form, Horizontal & Vertical, and Superimposition, Number, Vertical

Within the limits of empirical validity of the LLTM, the difficulty of new items which have never
been presented to anyone can be predicted or tasks of prespecified difficulty can be constructed, us-
ing the parameter estimates of the elementary operations of the respective test materials.
This new possibility offered by the LLTM seems to be of special interest in view of individualized
adaptive testing. ere, large numbers of-it is to be hoped- unidimensional items, which ought to
vary within a broad range of difficulty, are needed so that for each individual the optimal choice, de-
pending on his/her ability level, is possible. The use of the described universe of items for a branched
testing procedure was tried out by Fischer and Pendl (1980); their approach attempted to combine the
advantages of simple paper-and-pencil administration with that of the increased precision of adaptive
testing.

A necessary requirement for such uses, as well as for constructing parallel tests, is the constancy
of the parameters of the cognitive operations within a defined population of persons. This can be as-
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sumed to hold, by and large, for the described matrices test, as can be concluded from later investiga-
tions of Piswanger (1975; see also below), Nahrer (1977), and Habon (1981).

Scheiblechner (1972) attempted to adjust the LLTM to take account of the phenomenon that
those items which are presented at the end of a test are relatively easier than items with a similar
structure presented at the beginning. Such systematic deviations can be attributed to learning which
occurs during test taking, independent of whether the items are solved or not. (In contrast to this as-
sumption, Kempf, 1977, formulated a response-contingent dynamic test model).

Two types of such learning processes can be distinguished, namely, global vs. operation learning.
In global learning it is assumed that all item parameters hi can be decomposed into the operation pa-
rameters ~7j and one additional parameter, 6, which measures the effect of learning derived from prac-
ticing the operations. The weight assigned to this parameter 6 denotes the total number of operations
contained in the items 1,29 ooa, i - 1, i.e., how often it was already possible to practice operations, in-
dependent of which concrete operations these actually were. Equation 4 then becomes

if, on the other hand, learning occurs specifically for each of the operations (operation learning),
as many learning parameters 6., are added as there are r¡j namely, one for each operation. The re-
spective weights specify how often operation was contained in the preceding!’ &horbar; 1 items and how of-
ten, therefore, it was possible to practice it. Then, instead of Equation 12

is obtained.

The obvious argument that practicing an easy operation is not likely to facilitate mastering some
difficult operation, which perhaps has not even occurred in the test so far, speaks against the hypoth-
esis of global learning. In this respect, the assumption of Equation 13 appears to be more plausible.
On the other hand, Equation 13 implies that the difficulty of an operation that has been sufficiently
practiced will become negative in the long run. This is a psychologically meaningless consequence be-
cause then the involvement of this operation in solving an item would make the item easier. Spada
(1976, pp. 1~6-15~; 1977) has dealt with this problem extensively and has made suggestions on how to
overcome it. He investigated tasks from elementary mechanics and concluded that the LLTM was
superior to the other models applied by him, namely, the deterministic model of Scandura (1973), the
probabilistic automata model of Suppes (1977), and the logistic automata model formulated by
Spada, even if the LLTM fitted only approximately. But the LLTM yielded interpretable parameters
for his three sets of items, and the results were corroborated by cross-validations carried out in addi-
tion to the usual tests of fit.

The possibility of detecting learning processes within the test-taking situation is a methodological
novelty, not to speak of the other assets of the LLTM. This becomes very relevant in connection with
adaptive testing because this assumes the availability of a homogeneous pool of items with param-
eters which are constant ~~zdep~n~e~et of the order &reg;f ~~°es~r~t~t~&reg;~. This problem of learning seems to
have been ignored in the literature on adaptive testing. Applications of the ~~,~’~9 however, have
pointed very definitely to the existence of such changes in the item parameters which might be a rea-
son for questioning the feasibility of adaptive testing. If, however, one of the above-mentioned models
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for learning (or similar ones) proved to be sufficiently valid, then the order effects of item presentation
could be taken into account in estimating the person parameters.

Finally, some more applications of the LLTM should be mentioned: Haudek (1973) studied num-
ber sequences Heinrich (1975), syllogistic reasoning; and Kubinger (1979, 1980), the difficulties ex-
perienced by psychology freshmen when undertaking statistical analyses of experimental data.

7 item Bias

Within the framework of latent trait theory, an item is called biased if a person’s probability of a
correct response, given the ability parameter 0., depends on the membership of that individual in
some group of persons, e.g., an ethnic group (see Lord, 1980, pp. 217-224; Nenty & Dinero, 29e~29
Scheuneman, 1975, 1980). Hence, the empirical analysis of item bias is closely related to testing the fit
of the model to the data. The presence of item bias precludes the validity of the latent trait model for
the total population of individuals.

’ The ~1~2 is particularly suited for studying item bias, since the item parameters can be estimated
sample-free if the model is empirically valid. Deviations in the estimates in different groups of per-
sons point to lack of validity of the model; parameter differences can be interpreted as item bias, at
least as long as the model is true within each of the separate groups,

Even in the early applications of the 2~~, generalizability of the item parameter estimates across
populations was seen as an important desideratum (e.g., Kearney, 1966; Melienbergh, 1972). Spada
(1969, 1970) examined some scales of the &dquo;LPS&dquo; intelligence test (Horn, 1962) whereby the total
sample was in turn split according to gender, age, and total raw score, enabling comparisons of the
resulting parameter estimates. Among other results, he detected some items that were easier for
males, whereas others were easier for females. 2n these comparisons, he used graphical controls and
an approximate ~-statistic proposed by Fischer and Scheiblechner (1970) for detecting differences
between item parameter estimates in two subsamples.

A multitude of methods for the statistical analysis of item bias in two or more subsamples by
means of the 2~~ exists: Wright and Panchapakesan (1969) and Wight, l~~~d9 and Draba (1976)
suggested analyzing the residuals, that is, the differences between observed responses ui, and their ex-
pected values Pi.. Andersen (1973; 1980, pp. 251-258) derived an asymptotic LR test for the compari-
son of groups (in standard applications of the RM, usually score groups). His test statistic is a global
measure for group differences, but not for the bias of single items,. Remarkable for its simplicity is a
procedure by Scheuneman (1975, 1980) that holds for any single item: Within the group of individ-
uals with raw sc&reg;re ~°a9 the probability of a correct response to item is s

and therefore does not depend on 0~ (as far as the RM holds). In a contingency table with score groups
as rows, (ethnic) groups as columns, and frequencies of correct responses to item as cell entries, the
Ho of the absence of item bias can be tested by comparing observed and expected frequencies with a
X2 test.

Recently, copious literature on tests of fit for the RM and on their sensitivity to various sources of
deviations has been published (see Andersen, 1973; Andrich & Kline, 1981; Formann, 1981;
Gustafsson, 1980b; Hanxerle 55 Tutz, 1980; Martin-Lot, 1973; ~&reg;~en~.~~, 1981; Stelzl, 1979; Van den

Wollenberg, 1979, 1982; ~r~~ht ~ Stone, 1979). In sum, it can be said that there exist enough
methods for diagnosing item bias with the RM~
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The recognition of different item parameters in groups of individuals, however, makes it neces-
sary to interpret the causes for observed bias solely on an intuitive basis. If the item material is of such
a structure that the LLTM is applicable, the analysis can be done on the level of single cognitive oper-
ations, thus revealing the sources of item bias. This was shown in the following paradigmatic study by
Piswanger (1975): The set of 42 matrices items analyzed by Formann (1973) was presented to a cali-
bration sample of 2,485 Austrian students aged 14 to 18 and to 159 L~&reg;~~i~s~ and to 200 Nigeria stu-
dents of the same age group. In each of the three samples the LLTM was applied independently in
order to describe item difficulty in terms of the elementary cognitive operations discussed above. The
estimates ryj obtained are given in Table 1. Since each of the items comprised exactly two
components, each item parameter bi contained two basic parameters of each of the three factors ~r~e&dquo;
rule, d~~°e~~~&reg;~)o Therefore, one independent normalization condition per factor had to
be introduced: The rv within each factor, corresponding to the most difficult operation, was
normalized to be zero.

As Table 1 shows, the rank order of the basic parameters was the same in all three samples. With
regard to ~~~~~~~~~~~°&reg;~~~~ there are no substantial differences. As regards rule, the relative difficulty.
of &dquo;superimposition,&dquo; as compared to ~~~&reg;~t~~~~t~~~v’ and ‘~~~.~°l~t~~~~9~ seemed lesser for the Togo-
lese than for the Nigerians and Austrians. This can be understood in view of the fact that operating
with number, letter, and symbol sequences has become second nature for individuals in Western civil-
i~~ti~~~ (which is true for the Austrians and in part also for the Nigerians, who already have a long-
standing European school tradition), whereas bds~~~~i~~&reg;siti~~’~ is rather an unusual and therefore
less salient operation, For the Togolese, whose parents are often still analphabets, there is a less dis-
tinct difference in mastery between these operations. The largest discrepancy, however, resulted with
respect to d‘~~~c~~~~a For the Austrians it was by far easiest to apply a rule in the &dquo;horizontal&dquo; direc-
tion (i.e., always from the left to the right due to the item format). Applying a rule in the &dquo;horizontal

Table 1

Cross-Cultural Comparison of the Basic Parameters
of the liatrices Test
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and vertical&dquo; direction, second in difficulty, was slightly easier than in the &dquo;vertical&dquo; direction alone,
the difference between the two being, however, negligible. For the Nigerians, these differences were
much smaller, and for the Togolese, trifling. These findings can also be attributed to the cultural en-
vironments: The more a person is rooted in Western civilization with its characteristic reading and
writing habits, the more he/she tends to search for lawfulness from the left to the right, relative to
other directions. On the other hand, the older generation of Africans, e.g., the parents of the testees,
partly still use Arabic writing (from the right to the left). Because of the arrangement of the graphic
components, items with a &dquo;horizontal&dquo; direction can most easily be solved working from the left to
the right, and such items are thus harder if the person tries to work in the opposite direction.

Similarly, Whitely and Schneider (1981) have found gender differences with items from the Cog-
nitive Abilities Test (Thorndike & Hagen, 1974); although the overall comparison yielded no signifi-
cant differences between gender groups, a significant difference was obtained for the operation ‘6spam
tial distortions.&dquo; Another recent study describing item bias on the basis of a linear structure of the
item parameters is due to Mislevy (1981).

m the ~&reg;r~~~~~ Test

In the Rorschach test &dquo;succession&dquo; means the specific sequence of responses a person gives to one
inkblot. Sequential dependencies within the sequence of responses are well known from Rorschach
practice (cf. Alcock, 1963, pp. 68-69; Bohm, 1957, pp. 91-92), but the opinions of theoreticians about
the Rorschach test differ with respect to the diagnostic significance of succession. Newer psycho-
metrically oriented modifications of the inkblot test avoid this problem by considering only one re-
sponse per plate ~~&reg;lt~~~.~, ’~h&reg;rp~9 Swartz, & Herron, 1965, pp. 6-7, 11-12). Applications of latent
trait theory to the Rorschach test have also been restricted to the first response per inkblot (Fischer,
1968, pp. ft~-~~3~9 Fischer & Spada, 1970, 1973; Spada Fischer, 1973). For analyzing complex an-
swer sequences, no appropriate models were available in the past. At first sight, sequential dependen-
cies seem to contradict the assumption of local stochastic independence, which is central to latent
trait models. Nevertheless, it will be shown in the following that the LLTM is useful for revealing cer-
tain dynamic processes which occur when a person interprets an inkblot.

In spite of the obvious complexity of the phenomenon of succession, there seems to exist some
regularity in response sequences, especially regarding &dquo;location&dquo;: &dquo;For example, a protocol contain-
ing many responses is likely to include a smaller p~&reg;~&reg;r~~&reg;a~ of ’whole’ responses, since the number of
whole responses that can reasonably be perceived in the blots is quite limited, while associations to
isolated details of the blots may continue indefinitely&dquo; (Anastasi, 1968, p. 497). As soon as a person
gives a whole (W) response to an inkblot, he/she exhausts her repertory of W’s to some extent and
will, therefore, in the sequel, tend to give &dquo;detail&dquo; or &dquo;small detail&dquo; responses (both denoted here by
D). This, of course, implies a change in the person (i.e., in his/her behavior), but in a formal sense it
can also be postulated that the item difficulty as regards the second response changes, depending on
the first response. (For simplicity, considerations are restricted here to two responses per person and
plate). The LLTM enables formalization and empirical testing of the following three hypotheses:

~o~ The first response has no influence on the second response, i.e., the parameters of inkblot diffi-
culty are constant.

Hi : If person a gives a W to plate i, the difficulty parameter of plate I for person a increases by a con-
stant amount d as far as the next response is concerned, i.e., the regularity of change can be gener-
alized over individuals and inkbiots.
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N2: If person a gives a W to plate i, the difficulty parameter of plate for subject a changes by a con-
stant 6i, i.e., the regularity of change can be generalized across individuals but need not be the
same for all inkblots.

Assuming the RM as the response model, No can be formalized by means of the following set of
equations, whereby 30 6‘t~ch~i~~~’9 items (T items) are assigned to the 20 reactions per person.

where bi denotes the difficulty of Plate I for the first response, b, its difficulty after a previous and
lh after a to each condition under which a response can be observed, a T item parameter is as-
In the same manner, ~4, ~5, and h6 denote the difficulty parameters for the responses to Plate
and so forth. The basic parameters ~7 ...... fllO are measures of the difficulty of each of the 10 ink-
blots, and c is the usual normalization constant in the RM. The system of Equations 15 expresses
linear constraints on the item hi so that the RM becomes an LLTM. In a similar manner,
H, is formalized by means of the following system of equations:

Finally, N2 can be expressed by
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When comparing the systems of Equations 15, 16, and 17, it is seen that they form a hierarchy,
with Equations 15 being the strongest and Equations 17 the weakest hypotheses. (Of course, many
more hypotheses could also be formulated in the same manner).

These three hypotheses, have been tested empirically on the basis of 150 Rorschach protocols
(from 50 patients with organic psychosyn drome, 50 neurotics, and 50 healthy control subjects). The
protocols comprised one or two responses per person and plate, i.e., the data were incomplete. For es-
timating the basic parameters YI., and d (or 6j, ~~s~a~~°t~~~~~ri9 the data matrix ~~ had to be transformed
into a new data matrix U with M = 30 ~‘ items (see Table 2). Apart from the observations already mists-
ing in U, U was necessarily highly incomplete, since reactions were observed only to either T items 2
or 3, 5 or 6,. and so forth.

Table 2

Schematic Representation of the Responses of N=150
Subjects to 10 Rorschach plates (Data Matrix U) Their

Reinterpretation as Responses to 30 T Items (Data Matrix 6)

*Denotes observation@

Empirical analyses of the data of the 150 individuals under Ho, jHB, and ~2 yielded the estimates
and confidence intervals given in Table 3. The plate parameters qj were normalized such that ?7, = 0.
The parameters qj mirror the fact known from Rorschach practice that W responses to Plates I and V
are quite popular, whereas ~V responses to Plates VIII and X are given rather rarely (only by uncriti-
cal or by creative persons). The parameter d, estimated under ~,9 proves the truth of the conjecture
that a Vi as the first response makes the inkblot more difficult with regard to a second W; however,
this effect is not very strong. The parameters y estimated under N2 reveal a considerable variability of
such e,g&dquo; for Plate second W responses are very rare, whereas for Plate there seems to
be even a slight (albeit nonsignificant) increase in the tendency to produce W’s after a first W.

For an inferential comparison of the three hypotheses, the conditional likelihoods, computed ac-
cording to Equation 5, were used, These were ln~ = -- 1018.60 for No, 1~ _ ° 997.58 for Hi, and
1-iiI- - 971.07 for H2. The ~s3;~pt&reg;t~~ test statistic for 110 against ~’~g9 therefore, was

~~ _ ~° 2(- 101~8~60 + 997.58) = 42.04 with df # 1 (because H, from jH&dquo;o by only one additional
parameter d~9 which was significant at a = .01. The hypothesis of no effect of the first response on the
second one therefore had to be rejected. The test statistic for Hi against H2 was

X’ = - 2(.- 997.58 + 9‘~f .~~ _ 53.02 with df = 9, which again was significant at a = .01. The hypoth-.
esis of an effect of the first response which can be generalized over all plates had to be rejected. This is
not surprising in view of the complexity of the process of interpreting an inkblot.
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Table 3
Rorschach Succession: Basic Parameter Estimates

Under ~ H~, and P,2

Measurement of Change

It is a characteristic of a successful science that it allows valid predictions of reality and,
the intervention of on their conditions. to psychology this
means th~t, e.~.9 the of about the effects of educational or clinical treatments con-
stitutes an criterion for the scientific character of applied As will be shown in
the latent trait theory provides a solid for attaining this goal.

Linear Models with Relaxed ~~ p~t~~~s

Parallel to the of the LLTM described models for ~e~.s~~~~~ ~tt~t~d~~~~ and
behavioral due to the influence of mass ~~rr~~~~~~~ty&reg;~s have been these models
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can also be used for quantifying other kinds of treatment effects (Fischer, 1972, 1976, 1977a, 1977b,
1980). Formally, they can be considered LLTMs for incomplete data.

Suppose that the reactions of N individuals to n items (or more generally: n criteria, such as the
presence or absence of certain clinical symptoms) have been observed at several points of time
~,~ ~29 .~~9 4 with the aim of studying the effects of given treatments or treatment combinations. Let the
respective data matrices be denoted by U,, with elements ~~ax9 ~ = 1, ..., h. The probability of reaction
&dquo; + &dquo; of person a to item (or criterion) at time t, will be described by the following 1CC :

6~ is the latent ~.biiity &reg;r tendency of person a to give the reaction &dquo; + 99 t&reg; item (or crite-
ri&reg;n) ~ at time ~19

qa; is the dose of trc~.t~cnt ~ as applied to person a; i
k7j is the effect of treatment i;
T is the ‘6t~°er~dy’9 i.e., the sum of effects which are independent of the treatments; and

cia is the total amount of change in person a caused by treatments and trend.
This ICC differs from the customary ICCs because the individuals are not characterized with re-

spect to just one latent dimension but to a multidimensional latent space. The items, therefore, need
not be unidimensional, i.e., conforming to the f3~ or to some other well-known latent trait model,
but may be heterogeneous. Hence, it may hold that, for example, one person a should have a pro-
nounced tendency to show symptom !’ but a small likelihood for showing symptom R while the reverse
is true for another person al. The model defined by Equations 18 and 19 has been termed the ’linear
logistic model with relaxed assumptions&dquo; (LLRA) because it drops the restrictive assumption of uni-
dimensionality, which is difficult to attain in many educational or clinical settings. Only the treat-
ment effects are measured by scalar parameters in a single dimension, and at the same time also the
amount of change in any person a as the sum of treatment effects and trend.

The philosophy underlying this model is that in applied science simple answers to simple ques-
tions, as, e.g., &dquo;What is the relative effect of treatment j in comparison to treatment ‘~99 are often
needed. In order to allow, at least in principle, an answer to such questions, an additive combination
of the effect p~r~rnetcrs ~;9 weighted by the dose measures, has been assumed in Equation 19. The and-
ditivity implies a &dquo;concatenation operation&dquo; for the treatments and entails ratio-scale properties for
the a~~9s and T. These are very strong assumptions, of course, but they may serve as an No against other
more complicated ~.ss~~apti&reg;~s9 so, for instance, interaction terms might be included in Equation 19,
or nonlinear dose response curves. Within the scope of the present paper, however, it is not possible to
discuss the complications of the model ensuing from such generalizations.

It is easily seen that the model defined by Equations 18 and 19 can be reduced to an LLTM: Be-
cause of the local stochastic independence and the multidimensional parameterization, the reactions
Uiax and ~~~ of the same person a are independent of each other as if they stemmed from two different
individuals. All the elements of one data matrix ~3x can therefore be considered, in a purely forma!
sense, as the responses of ~~ &dquo;technical&dquo; persons (T persons) with person parameters 6,*, 9
g = ~~ - 1)M + i, i.e., with g running from 1 through nN, given to h items with the parameters
‘~&dquo;~x - ~1/~°’R9 -
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This transforms the ICCs of Equation 18 into those of an LLTM with incomplete data. The weights in
the linear Equation 19 seem to depend on the individual a (i.e., on 0.) but, as a matter of fact, only de-
pend on the treatment doses prespecified in the design. Hence, it is in principle possible to estimate
the parameters nj and r and to test hypotheses by the same methods as in the LLTM described above.
It can be shown that the estimation equations become much simpler if the design comprises only two
points of time, i.e., if there is a pr~t~st~p&reg;stt~st design (Fischer, 1977a, 19 77b, 1980, 1982). Mainly for
this reason almost all the applications thus far have been restricted to two times of observation.

of the Model

A detailed exposition of the LLRA, of its properties, and of the many applications is not possible
here due to lack of space (some of them are mentioned in Fischer, 1978); in order to illustrate the po-
tential uses of the LLRA, only two cases will be described. Rop (1977) studied the effects of three cog-
nitive preschool education programs on the development of intelligence in Viennese kindergarten
children. A primary aim of the study was to find the maximal range of generalizability of the treat-
ment effects across different subsamples of children and of items (i.e., latent ability dimensions). The
effect parameters Ylj and T could, in fact, be generalized, over all the samples of children, but the ef-
fects of the programs turned out to be significantly different in three of cognitive abilities (ver-
bail intelligence, v&reg;~~,b~l~.ry9 and nonverbal intelligence). One notable result was that the early read-
ing program was by far the least effective and had a significant impact only on the domain of vocabu-
lary items. The two other programs (logical thinking and verbal training) proved effective in all three
ability domains, i.e., also with respect to noniverbal intelligence.

Heckl (1976) investigated the effects of speech therapies in children with speech handicaps, using
a very heterogeneous battery of test items, symptoms, and anamnestic data as &dquo;criteria&dquo; of change.
No difference was found between effects of the three forms of therapy used, but there were different
effects in children with severe speech disorders and in those with only slight handicaps, The trend
parameter r, for instance, differed nonsignificantly from zero for children with severe speech dis-
orders, which implies that these children made no significant progress (within the time period studied
and with respect to the criteria used), unless they obtained therapy. Among the slightly handicapped,
on the other hand, there was a significant positive trend independent of the treatments. Heckl also
tested the linearity of the dose response curve, a hypothesis which had to be rejected: If therapy was
applied too frequently (i.e., twice a week), then its effect was less than that of two equivalent therapy
sessions in subsequent weeks, in other words, a satiation phenomenon was observed.

These remarks on applications of linearly restricted logistic models to the measurement of change
should show that latent trait theory can go far beyond mere quantification of item and person param-
eters and can be used as a means of hypothesis testing. Further details can be found in the literature
mentioned. Similar developments have also recently evolved from the theory of log-linear models (see
Breslow, 1976; Koch, Landis, Freeman, Freeman, Jr., & Lehnen, 1977; Marascuiio & S~rl~~.9 1979; 9
Piewis, 1981~).

Dlsecs#lon

What conclusions can be drawn about the usefulness of linearly restricted logistic models (LLTM
and LLRA)? The hopes originally harbored-that the sources of the cognitive complexity of certain
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item materials could largely be darified-have not been entirely fulfilled, inasmuch as the LR tests of
the LLTM against the RM (as the alternative hypothesis) mostly turned out to be significant, so that
the LLTM had to be rejected. On the other hand, such statistical significances ought not to be over-
rated, because in many cases relatively samples of data were used for testing hypotheses about
only a few parameters, i.e., the tests were rather powerful; moreover, ultimately any significance cri-
terion is arbitrary. In order to the psychological relevance of the applications, it therefore

seems to be decisive whether the approximate constancy of the basic parameters across person and
item samples suffices for practical test construction purposes and/or from the point of view of psycho-
logical theorizing.

An interesting contribution to this question stems from Nahrer (197’/, 1980). He constructed a few
new items, each for several of the item materials described above, and predicted the item parameters
using the original estimates of the basic parameters. He then carried out a cross-validation by com-
paring the predicted parameters with the estimates I[ obtained in new samples of persons. This ap-
proach is remarkable because it amounts to real predictions-new items presented to new samples of
individuals-which are otherwise unusual in psychological research. The approximate correspon-
dence he was able to observe does not express model fit the t~~dYtY&reg;~~.1 sense, but is rather the result
of the validity of the underlying structural hypotheses which, of course, can never be perfect. Even in
cases of an unsatisfactory conformity of the model to the data, the mere formulation of those hypoth-
eses which are needed for with the LLTM leads to a ~1~~~°~~ of the substantive
problems, as was illustrated in the section on item bias.

However, researches should not be content with a rough fit of the model and with considering the
correlation between estimates hi based on Equation 4 and estimates L?~, within the same
sample as an indicator of a sufficient explanatory value of the model (as was done in some early appli-
cations of the LLTM). Such correlations will practically always occur, their sizes depending essential-
ly on the range of the difficulty parameters of the items. Finally, it is meaningless to test such a cor-
relation for significance since the Ho that the LLTM holds cannot be expressed by ‘5~° = 0, &dquo; but would
have to be &dquo;r = ~~9 for which no adequate test statistics exist.

Another temptation that should be resisted is to formulate too large a hierarchy of structural hy-
potheses, from very simple ones up to the &dquo;saturated&dquo; hypothesis with a maximum number of identi-
fiable parameters, and to make a number of corresponding statistical tests on the set of
data. This would favor the occurrence of random results not supported by prior psychological hypoth-
eses.

Compared with the LLTM, the LLRA at the present state of knowledge can be rated more opti-
mistically. It has often been possible in empirical applications to retain null hypotheses of the gener-
alizability of results over item or person samples. This may be a result of the high flexibility of the
model due to its multidimensional parameterization. At the time, LLRA applications are not
limited to homogeneous item materials (as is the case with the LLTM), but range from intelligence
testing over attitude questionnaires to clinical symptoms or behavioral criteria. The focus of the ap-
plications of linearly constrained logistic models therefore is shifting more and more to the problem
area of measuring change. 

’
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