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Nedelsky (1954) and Angoff (1971) have sug- Consideration is also given to the impact of rater
gested procedures for establishing a cutting score disagreement on some issues of measurement relia-
based on raters’ judgments about the likely perfor- bility or dependability. Results suggest that the dif-
mance of minimally competent examinees on each ferences between the Nedelsky and Angoff proce-
item in a test. In this paper generalizability theory dures may be of greater consequence than their ap-
is used to characterize and quantify expected vari- parent similarities. In particular, the restricted na-
ance in cutting scores resulting from each proce- ture of the Nedelsky (inferred) probability scale may
dure. Experimental test data are used to illustrate constitute a basis for seriously questioning the ap-
this approach and to compare the two procedures. plicability of this procedure in certain contexts.

Currently there is considerable debate concerning procedures for setting passing standards, or
cutting scores, when scores on tests are used to make certain types of decisions (see, for example, Na-
tional Council on Measurement in Education, 1978). Meskauskas (1976), Buck (1977), and Zieky and
Livingston (1977), among others, have reviewed some current procedures for establishing cutting
scores. For the most part these procedures can be grouped into two categories—procedures that use
raters’ subjective judgments and procedures that use examinee scores on the test itself and/or some
criterion measure. The latter category of procedures is not discussed in this paper; rather, this paper
examines two procedures suggested by Nedelsky (1954) and Angoff (1971) for establishing cutting
scores based upon raters’ judgments.

Nedelsky and Angoff Procedures

Both of these procedures require judgments by raters concerning the performance of hypothetical
“minimally competent’ examinees on each item of a test. Using Nedelsky’s procedure, raters are
asked to identify, for each item, those distractors that a minimally competent examinee would elim-
inate as incorrect. The reciprocal of the number of remaining alternatives (including the correct an-
swer) serves as an estimate of the probability that a ‘‘minimally competent’ examinee would get the
item correct. In Angoff’s procedure, raters simply provide an estimate of the item probabilities with-
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220 APPLIED PSYCHOLOGICAL MEASUREMENT

out specifically identifying which distractors a ‘‘minimally competent” examinee would eliminate.
For both procedures the mean of the item probabilities, over items and raters, is defined as the cut-
ting score for the test (in terms of proportion of items correct). Notationally, throughout this paper, X
is used to denote the cutting score, or more specifically, the mean cutting score that results from a
particular study. For a particular rater, r, the mean of that rater’s item probabilities will be denoted
X., which can be interpreted as the cutting score that would be assigned by that particular rater.

Issues and Approach

The Nedelsky and Angoff procedures are appealing in many contexts because they are under-
standable to raters and test users; and these procedures force raters to give detailed consideration to
the specific content of a test, rather than to its general characteristics. However, the validity and prac-
tical utility of these approaches, and similar approaches, for practical decision making may rest heav-
ily upon the extent to which raters agree in their judgments. This concern for rater agreement has re-
ceived very little attention in the context of establishing cutting scores, although Andrew and Hecht
(1976) do address some aspects of this issue.

The principal purposes of this paper are (1) to consider a specific psychometric approach for
characterizing and quantifying the magnitude of error variances (in either cutting score procedure)
attributable to disagreement evident in rater judgments; (2) to illustrate this approach with exper-
imental data; (3) to compare the Angoff and Nedelsky procedures; and (4) to examine the impact of
rater disagreement on some issues relating to the reliability or dependability of measurement.

The principal psychometric approach employed here to address these issues is based upon gener-
alizability theory, which is most completely explicated by Cronbach, Gleser, Nanda, and Rajaratnam
(1972). In this paper concepts and equations from generalizability theory are used and explained as
needed, but most results are not proven. Readers desiring more detail are referred to Cronbach et al.
(1972) and/or Brennan (1977). It should be noted that there are many aspects of generalizability the-
ory that are of little concern in this paper. For example, generalizability coefficients per se are not dis-
cussed. Indeed, the approach used here is essentially variance components analysis viewed from the
perspective of generalizability theory. Nevertheless, for the purposes of this paper, generalizability
theory is especially appropriate because it allows differentiation among multiple sources of error rel-
evant to the cutting score procedures under consideration, and because generalizability theory con-
siderably facilitates consideration of the impact of rater disagreement on measurement dependabil-
ity. However, some of the issues treated here could be addressed using results from multiple matrix
sampling theory (see Sirotnik & Wellington, 1977, p. 354) or results discussed in texts on mathemat-
ical statistics (e.g., Wilks, 1962, secs. 8.6 and 10.8).

Both the Nedelsky and Angoff procedures necessitate judgments about ‘‘minimum competence.”
In one section of this paper, consideration is given to aspects of how the two procedures allow a rater
to operationalize some conception of minimum competence; otherwise, however, this paper is not in-
tended to treat educational, philosophical, or psychological issues associated with defining minimum
competence. The authors also recognize that in realistic settings evaluators sometimes use more than
one cutting score procedure or a variant of one of the procedures discussed here, but this paper does
not address such issues in detail.

Angoff Procedure
For the Angoff procedure the probability assigned by rater r to item/ can be represented as
X S A+ AN+ A d [1]
ri ri
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CUTTING SCORES AND GENERALIZABILITY THEORY 221

where

A = grand mean for the population of raters and the universe of items,

A~ = effect for rater r,

A,~= effect for item i, and

A.~= effect for the interaction of rater » and item .
(Technically, since there is only one observation for each rater-item combination, the effect A~ is
completely confounded with any other sources of variation, sometimes called “residual’’ error.) Here,
unless otherwise noted, it will be assumed that the actual raters in the study can be considered a ran-
dom sample from an essentially infinite population of raters and that the actual items can be con-
sidered a random sample from an essentially infinite universe of items. Under this assumption, and
assuming independent effects that sum to zero, Equation 1 represents what is usually called a random
effects model for the >/ design.

Given this model, for rater r the expected probability over the universe of items is

A=A+ AN [2]
r r
whereas the average probability over the sample of n, items is X,. Similarly, for item /, the expected
probability over the population of raters is

A, = A+ AN [3]
1 1
and the average probability over the sample of n, raters is X..

Sample Statistics

Table 1 reports means, standard deviations, and intercorrelations for five raters who indepen-
dently applied the Angoff procedure to 126 four-alternative items in a health-related area. Also in-

Table 1
Means, Standard Deviations, and Intercorrelations
Among Raters for the Angoff Procedure

Mean S.D.
Raters over over
items items
Raters 2 3 4 5 2 X 5. (X_.)
r i ri
1 .525 .053 . 046 .150 .731 .671 .203
2 .171 . 206 .382 .744 .719 .16l
3 .161 -.036 .237 .656 .119
4 .209 .217 .617 .187
5a .432 .653 .218
c .698 .154
"""""" s
X = .663 (83.56) o(Xr) = .037 (4.70)

a_ . . . .

¢ is reconciled rating arrived at by the raters themselves.

Numbers within parentheses are expressed in terms of number of items.
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222 APPLIED PSYCHOLOGICAL MEASUREMENT

cluded in Table 1 are sample statistics for a reconciled rating, or consensus judgment for each item,
agreed upon by the raters after they independently employed the Angoff procedure. Each of the five
raters was a practitioner or teacher in the appropriate field. However, the actual test was not a min-
imum competency test. Also, these data, and all data discussed subsequently, were collected only to
study cutting score procedures per se, not to obtain cutting scores for operational use. Therefore, data
reported in this paper are properly viewed as resulting from experimental use of cutting score proce-
dures.

In Table 1 and subsequent tables, all results except those within parentheses are in terms of prob-
abilities or proportions. Results within parentheses are in terms of number of items. For example, for
these Angoff-type data the mean probability over n, = 5 raters and n, = 126 items is X = .663, which is
the (mean) cutting score, in terms of proportion of items correct. In terms of number of items correct,
the (mean) cutting score is 7.X, or 83.56.

The sample statistics reported in Table 1 will be examined in more detail later. Here, simply note
that Table 1 suggests that there is some degree of variability among rater means, as reflected by 6(X.);
there is some degree of variability within each rater, as reflected by 6,(X,.); and there is some degree of
variability in the rater intercorrelations. The sample statistics in Table 1, however, do not indicate
clearly the variability in the mean cutting score, X, which is a principal concern of this paper. In other
words, it is desired to estimate the variance (or standard deviation) of X if the entire study were repli-
cated with different samples of raters and/or items.

Estimates of Variability for Cutting Scores
The usual estimates of the variances associated with each of the random effects in Equation 1 are

2(r) = [MS(v) - MS (ri)1/n; ; [4]
62(i) = [Ms(i) - MS(ri)]/n_ ; and (5]
2(ri) = MS(ri) . (6]

These are called estimated random effects variance components. For, example, o*) is an unbiased
estimate of the variance of A, (or A,~) over the population of raters. Similarly, 6%() is an unbiased esti-
mate of the variance of A, (or 1) over the universe of items.

It is important that & (r) be differentiated from 6*(X,). The former is an estimate of the variance,
over the population of raters, of the scores (or probabilities) A,; the latter is the variance, over the sam-
ple of raters, of the scores (or probabilities) X,.

In terms of the random effects variance components

2%y = g2 22 (i
g (xr) = g4(xr) + ¢ (r1)/ni . [7]

In other words, the observed variance of rater means can be decomposed into two parts—one part
that is uniquely associated with raters and another part that is associated with the interaction of
raters and items.

In terms of the estimated variance components in Equations 4 to 6, there are three possible esti-
mates for the variance of the mean cutting score, X. These estimates differ in terms of the intended
universe of generalization.
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First, the expected value of the variance of X for generalizing over samples of n, raters and n;
items is

52 (%) = 82(r)/nr + 82(1)/ni + 82(ri)/nrni ) [8]

Consider the possibility of determining X a ‘‘very large” number of times, each time
using a different sample of n, raters and n; items. Equation 8 estimates the variance of the distribu-
tion of this “‘very large”” number of means. It is in this sense that 6* (X) is an unbiased estimate of the
variance of the mean for generalizing over both samples of raters and samples of items.

Second, the expected variance of X for generalizing over samples of n; items, for a fixed set of n,
raters, is

~2(% = §2¢; 22 (i 9
02(X|R) = 0o (i)/n; + o?(ri)/nn; . [9]

This variance is denoted 3 (X|R) to emphasize that raters are considered fixed. Again, consider the
possibility of determining X a “‘very large’” number of times, each time using a different sample of n;
items but the same 7, raters. 6*(X|R) is an unbiased estimate of the variance of this distribution of
means.

Third, when generalization is intended over samples of n, raters for a fixed set of n, items, the ex-
pected variance of X is

02 (X|1) = 02(x)/ 62 (ri 10
62 (X|1) = 0%(x)/n_ + 0?(ri)/nn, . [10]

Equations 8 to 10 provide three different estimates of error variance in the mean cutting score.
Which of these estimates is appropriate can be determined only in the context of a specific study, i.e.,
it is the decision maker who must determine whether it is appropriate to generalize over samples of
raters, items, or both. It is evident from Equations 8 to 10, however, that 5*(X) must be at least as
large as 5*(X|R) and 6*(X|]). This follows from the fact that 6*(X|R) does not involve variability due to
raters, 6%(r), and 6*(X|I) does not involve variability due to items, 63().

Generalizability Results for Angoff Procedure

For the Angoff procedure, Table 2 reports the usual ANOVA results, estimated random effects
variance components, and estimates of mean cutting score variability. (Brennan, 1979a, discusses a
computer program that can be used to obtain all of these estimates using the observed data matrix as
input.) It is usual in generalizability theory to report results in terms of variances; however, Table 2
also reports the three estimates of mean score variability in terms of standard deviations to facilitate
interpretation. Note, for example, that in terms of proportion of items, the standard deviation of X,
for generalizing over raters and items, is .018; and in terms of number of items, it is 2.29. Further-
more, 6(X) and &X]I) have approximately the same magnitude; both of them are almost twice as large
as (X|R). Clearly, for these data, the decision concerning whether or not to generalize over raters is
an important determiner of the magnitude of the standard deviation of X.

Readers familiar with generalizability theory will note that the above discussion does not differ-
entiate between sample sizes for a G study (or generalizability study) and a D study (or decision
study). That is, it has been assumed that the number of items and/or raters for a specific decision
(e.g., calculating the expected variability of a cutting score) is identical to the number of items and/or
raters characterizing the generalizability study. Also, the above results depend upon the assumption
that the population or universe size for each facet (raters and items) is essentially infinite. Sometimes,
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224 APPLIED PSYCHOLOGICAL MEASUREMENT

Table 2
ANOVA, Variance Components, and the Variability of Mean
Scores for the Angoff Procedure

Effect (o) arf SSs MS o4 (a)
r 4 .700 .175 .0012
i 125 7.144 .057 .0061
ri 500 13.353 .027 .0267
o2(X ) = .00l4 G(X) = .037 (4.70)
2(x)y = .0003 G(X) = .018 (2.29)
2(x|r) = .0001 G(X|R) = .010 (1.20)
62 (x|1) = .0003 ¢ (X|I) = .017 (2.10)

Note. The terms o2 (a) are, more specifically, 62(r), 82(i) ’ 32(ri).
Results in the second half of this table for the variability of mean
scores assume that n_ = 5 and n, = 126. Results within parentheses
are expressed 1in terms of number of items.

however, evaluators may wish to generalize to a finite population of raters and/or a finite universe of
items. Cronbach et al. (1972) and Brennan (1977) discussed considerations relevant to differing G
study and D study sample sizes; Brennan (1977) considered sampling from finite universes and/or
populations; and Brennan (1979b) incorporated both considerations in equations for estimating the
expected variability of a mean score. Equations 8 to 10 are special cases of these equations, as are cer-
tain equations resulting from multiple matrix sampling theory.

Nedelsky Procedure

The Nedelsky and Angoff procedures are similar in that for each item and rater, both procedures
result in a probability that a minimally competent examinee will get an item correct. However, the
Angoff procedure directly elicits this probability from each rater, whereas the Nedelsky procedure in-
volves inferring this probability from the number of distractors that a rater believes would be elimin-
ated by a minimally competent examinee.

Probabilities of Correct Response

Table 3 reports sample statistics, in terms of probability of correct response, that resulted from
applying the Nedelsky procedure with the same raters and items discussed previously. Note that the
mean cutting score, X, was .556 (70.09) for the Nedelsky procedure; whereas for the Angoff proce-
dure, X was .663 (83.56), as indicated in Table 1. Clearly, there is a substantial difference in mean
scores for the two procedures. Furthermore, Tables 1 and 3 indicate that the standard deviation of the
rater means for the Nedelsky procedure was approximately double the corresponding standard devia-
tion for the Angoff procedure.

Table 4 reports a generalizability analysis of the Nedelsky probabilities based upon the same
model and assumptions used to examine the corresponding results for the Angoff procedure in Table
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Table 3
Means, Standard Deviations, and Intercorrelations Among Raters
for Probability of Correct Response from Nedelsky Procedure

Mean S.D.
Raters over over

iEems items

Raters 2 3 4 5 Xr o, (Xri)
1 . 307 .118 .196 .377 .644 .283
2 . 065 .204 .350 .534 .232
3 .161 .195 .450 .183
4 .242 .570 .238
X = .556 (70.09)% g(X ) = .072 (9.03)°

a .
Results within parentheses are expressed in terms of number of
items.

2. In comparing the Nedelsky results in Table 4 with the Angoff results in Table 2, note that each of
the random effects variance components [6*¢), &(), and &(7)] for the Nedelsky procedure is consider-
ably larger than the oorresponding variance component for the Angoff procedure. This directly re-
sults in larger estimates of 6(X), 6(X|R), and 6(X|D), for the Nedelsky procedure. For the two proced-

ures A(X|R), for generalizing over items, is approximately the same. However, (X), for generalizing
over both raters and items, is about twice as large for the Nedelsky procedure; and a similar state-
ment holds for &(X|I), with generalization over raters only. In a later section these and other differ-
ences between the two procedures are examined in more detail.

Table 4
ANOVA, Variance Components, and Variability of Mean Scores
for Probability of Correct Response from Nedelsky Procedure

Effect (a) as ss MS 62 (a)
r 4 2.589 .647 .0048
i 125 13.182 .106 .0125
ri 500 21.428 .043 .0429
62(X ) = .0051 G(X) = .072 (9.03)
62(X) = .o0l1 G(X) = .034 (4.24)
62(X|R) = .0002 G(X|R) = .013 (1.64)
62(x|1) = .0010 d(X|1) = .032 (4.04)

. Note. The terms 82(oc) are more specifically éz(r), 32(i), and
Uz(ri) . Results in the second half of this table, for the variabil-
ity of mean scores, assume that nr = 5 and n. = 126.
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Eliminated Alternatives

One way of viewing the results presented thus far is that in terms of setting a single cutting score
with the Nedelsky or Angoff procedure &(r7) is always a source of error, 6*(r) is a source of error if
generalization is over raters, and 6*(i) is a source of error if generalization is over items. This state-
ment is based upon the linear model in Equation 1 for the probability assigned by a rater to an item.
In the Nedelsky procedure, however, the data that are actually collected are eliminated distractors,
not probabilities, even though the cutting score resulting from the Nedelsky procedure is based di-
rectly upon probabilities. (Technically, the cutting score is a linear function of the inferred probabili-
ties and a nonlinear function of the eliminated distractors.)

Several potentially confounding issues arise when the set of eliminated distractors for raters and
items is considered. For example, for a given item, if two raters indicate that the same number of dis-
tractors would be eliminated by a minimally competent examinee, then the (inferred) probability as-
signed to the item by these two raters is the same, whether or not the raters agree on which distractors
would be eliminated. Technically, in terms of the way Nedelsky formulated his procedure, such dis-
agreement among raters has no bearing upon the cutting score that results from the procedure. How-
ever, it seems reasonable to postulate that confidence in the Nedelsky procedure, in a specific context,
might be influenced by the extent to which raters agree, not only with respect to the number of dis-
tractors that would be eliminated, but also with respect to which distractors would be eliminated.

To examine this issue, variance components can be estimated for a design in which raters are
crossed with items, and distractors (d) are nested within items. This design is denoted rx(d:i).' Formu-
las for estimating variance components for this design are presented in Table S, along with the esti-
mated variance components for the data. It is usual in many applications of generalizability theory to
report random effects variance components, based on the assumption that the population (or uni-
verse) size for each facet is essentially infinite. In this case, however, it seems unreasonable to consider
the n, = 3 distractors associated with each item as a sample from an essentially infinite universe of
possible distractors for the item. Therefore, in Table 5, the variance components are reported under
the assumption that distractors are fixed and this assumption is indicated by the notation 6*(a|D),
where a is any one of the five effects in the design.

Consider the two variance components in Table S that involve variability attributable to distrac-
tors. The variance component 6*(d:i|D) reflects the average, over items, of the variance attributable
to the proportion of raters who eliminate each distractor. The magnitude of 6%(d:i| D) will be large
when, on the average, raters judge an item’s distractors to vary in their difficulty, or attractiveness, to
examinees. By contrast, the magnitude of 6%(d:i|D) reflects disagreement or variability among raters
in their judgments of distractor attractiveness for an item. To put it another way, the magnitude of
0%rd:i|D) reflects the extent to which raters disagree in their judgments about which distractors
would be eliminated by a minimally competent examinee.

If 6%(d:i|D) = .063 is considered as an estimate of ‘‘true” variability among distractors, then the
estimate of ‘“‘error” for n, = 5 raters is 62 (vd:i|D) /n, = .181/5 = .036. Evidently, the error variance (at-
tributable to the differential attractiveness of distractors for different raters) is almost 50% as large as
the true variance among distractors. This suggests that for these data, even when raters agree on the
number of distractors that would be eliminated, there are substantial differences among raters con-
cerning which distractors would be eliminated.

'For the r x (d:i) design it can be argued that a rater may not examine a given distractor independent of the other distractors for
an item. If so, then one independence assumption associated with the linear model for this design becomes suspect, at least to
some extent. This issue, however, is relatively unimportant here because the analysis is intended only to summarize data that
have an indirect bearing on the principal analyses in this paper.
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Table 5
ANOVA and Variance Components for Eliminated Distractors
Using Nedelsky Procedure

Effect (o) af ss MS g2 (alD)
r ] 9.342 2.335 -006
i 125 42.625 .341 .012
a:i 252 124.925 .496 .063
ri 500 79.984 .160 .053
rd:i 1008 182.885 .181 .181
82(r|D) = [MS(r) - MS(ri)]/nind c;z(rJ.lD) = MS(J:l)/nd
o2 (i |p) = [Ms(i) - MS(ri)1/n ng 02(rd:i|D) = MS(rd:i)
62(d:i|D) = [MS(d:i) - MS(rd:i)]/n_

1l to 5:

Note. In this table X_ and X refer to proportions of eliminated

distractors—--not probabilities of correct response.

In conducting a study with the Nedelsky procedure, it is usual to provide raters with complete
items, including the correct alternatives. If the correct alternatives for all items are specified a priori
for the raters, then it might be expected that no rater will indicate that a minimally competent ex-
aminee would eliminate a correct alternative. On the other hand, if correct alternatives are not spec-
ified a priori (and they were not in this study), then it might be expected that some raters will indicate
that a minimally competent examinee would eliminate the correct alternative for some items. Indeed,
this did occasionally occur in this study. No evidence of clerical error or miskeyed items was found to
explain these results, and there is no reason to believe that raters did not take their task seriously. It is
likely, however, that individual raters had differing levels of familiarity with the content tested by
specific items; and it could be that some raters truly believed that a correct answer would be elim-
inated by a minimally competent examinee.

When a rater indicates that the correct answer would be eliminated by a minimally competent ex-
aminee, it might be argued that the (inferred) probability assigned by the rater to the item should be
zero, no matter how many distractors are eliminated by the rater. However, for the purposes of this
study, this argument was not adopted. Rather, Nedelsky’s procedure, as he described it, was followed,
and probabilities were assigned on the basis of eliminated distractors only. This approach was chosen
for two reasons. First, since the principal purpose was to compare the Angoff and Nedelsky proce-
dures as they are currently stated, it was not desired to alter the Nedelsky probabilities without a cor-
responding alteration of the Angoff probabilities; and there was no objective basis for altering the
Angoff probabilities. Second, if a probability of zero had been assigned whenever a rater indicated
that a minimally competent examinee would eliminate the correct alternative, then X would decrease
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and the estimates of variability would increase. The approach taken is a conservative one, for the pur-
poses of this paper, in that the results reported here for the two procedures may be somewhat more
similar than might be the case, otherwise.

A Comparison of the Two Procedures

Since the Nedelsky and Angoff procedures were both applied to the same items by the same
raters, the data from these two procedures can be analyzed jointly in a single design. Specifically, the
appropriate analysis involves the p % r x i design, in which the two procedures (p) are crossed with
both raters and items. Table 6 provides equations for estimating the variance components for this de-
sign, and Table 7 provides the numerical values of these estimated variance components for the data.

The variance components, identified as 6%(a) in Table 7 are obtained by letting N, approach infin-
ity for the equations in Table 6; these are called random effects variance components. The variance

Table 6
Equations for Estimating Variance Components and the Expected Variance
of the Mean Score for the p x r x i Design

Effect Estimated Variance Component

p [MS (p)

MS(pr) - MS(pi) + MS(pri)]/nrni

r {MS(r) - Ms(ri) - (1 - np/Np) [MS (pr) - MS(pri)]}/npni
i {MS(i) - MS(ri) - (1 - np/Np)[MS(pi) - Ms(pri)]}/npnr
pr [MS(pr) - MS(pri) ]/n:.L
pi [Ms(pi) - MS (pri)]/nr
ri [MS(ri) - (1 - np/Np)MS (prl)]/np
pri MS (pri)

When n_ = N _, the variance components are identified as cz(aIP) In

terms of these variance components:

02(X_|P) = 62(x|P) + G2 (ri|P)/n,

Si(ilP) = o2(x|P)/n, + 62(i|P)/n, + o*(ri[P)/n n;
62 (X|p,R) = G2 (1|P)/n; + az(rilp)/nrni
62(X|P,T) = o2(zr|P)/n_ + 62 (ri|P)/n n,

Note. These estimates are based on the assumptions that the model
is fully restricted; and that, for finite values of N_, all variance
components associated with the p facet are defined “using a factor

of N - 1. For example, if u r’\: is the effect for the interaction
of ppand r, then oz(prIP) is P¥defined as ¢ E (upr'b) 2/(Np - 1.
P r
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Table 7
ANOVA and Variance Components for Probability of
Correct Response with Both Procedures

Effect (a) as ss MS 52 () 52 (a|P)P
p 1 3.599 3.599 .0050 .0050°
r 4 1.554 .388 -.0002 .0014
i 125 15.660 .125 .0074 .0083
pr 4 1.735 .434 .0032 .0032
pi 125 4.665 .037 .0019 .0019
ri 500 20.952 .042 .0071 .0210
pri 500 13.829 .028 .0277 L0277

Means over procedures and items for raters 1 to 5:

X = .658, .627, .553, .593, .619

______________________ Y e
X = .610 (78.82) 32(x,) = 62(x_|P) = .040 (4.99)
62(X|p) = .o004 G(X|P) = .020 (2.46)
62(x|P,R) = .0001 G(X|P,R) = .010 (1.26)
G64(X|P,I) = .0003 J(X|P,I) = .018 (2.22)

a ~
Values of 02 (a) are for N_ + « in the equations in Table 6.

Pyalues of 62 (aIP) are for n_= N_ = 2 in the equations in
Table 6. p p

“some writers would refer to .0050 as an estimate of a quadratic
form, rather than as an estimated variance component.

components identified as 6%(a|P) in Table 7 are obtained by letting n, = N, = 2 in Table 6; and these
variance components are based on the assumption that procedures are fixed. The variance compon-
ents o*(a|P) are appropriate when interest is restricted to the actual procedures in this study. Strictly
speaking, the variance components 6*(a|P) seem more appropriate here than the random effects vari-
ance components ¢*(a) because it seems difficult to consider these two procedures as a sample from
some very large set of similar cutting score procedures.

Tables 6 and 7 also provide equations and numerical values for estimates of the variability of X,
where X is, in this case, the mean over raters, items, and procedures. For example, Table 7 reports
that X (over procedures) is .610 (78.82), which is the mean of the X’s reported in Tables 1 and 3.

The reader should note, however, that the estimates of the variability of X in Table 7 are not aver-
ages of the corresponding estimates in Tables 2 and 4. For example, 6 (X|P) = .020 (2. 46), which is
similar to 8(X) = .018 (2.29) in Table 2 for the Angoff procedure but quite different from 6(X) = .034
(4.24) in Table 4 for the Nedelsky procedure. This pattern of results also holds for o(X|P.R) and
oX|P.I). For these data, therefore, one inference that might be drawn is that there would be no par-
ticular advantage in actually setting a cutting score by averaging X from procedures, assuming that
interest is primarily in minimizing the variability of X.

Downloaded from the Digital Conservancy at the University of Minnesota,

May be reproduced with no cost by students and faculty for academic use. Non-academic reproductlon
requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/



230 APPLIED PSYCHOLOGICAL MEASUREMENT

Perhaps the most outstanding result in Table 7 is that variance components that contain p are rel-
atively large, indicating that there are substantial differences between the two procedures and the
probabilities that result from them. For example, the variance components suggest that there is con-
siderably more variability attributable to differences in procedure means than to differences in rater
means (over procedures). From another perspective, it can be shown that the observed variance in the
two procedure means is

. . G2(pr)  62(pi)  o?(pri)
oz(x.p) = o2(p) + + + ] [11]

n n, nn,
r 1 r 1

The relationship expressed by Equation 11 also holds using the “procedures fixed’’ variance compon-
ents. In other words, the variance components that contain p contribute directly to the disparity iden-
tified in the procedure means. In effect, Table 7 crystallizes many of the differences between the two
procedures evident in comparing Table 2 with Table 4.

Differences in Sample Statistics for Raters

Differences between the two procedures can also be examined using the sample statistics reported
in Tables 1 and 3. In examining these differences, relationships between the results in Tables 1 and 3
and the analysis of variance results in Tables 2, 4, and 7 will occasionally be pointed out (without
proof).

Correlations and covariances among raters, within procedures. Using Tables 1 and 3, the reader
can verify that the average of the rater intercorrelations for the Angoff procedure is .187 and the cor-
responding result for the Nedelsky procedure is .222. In terms of covariances, these averages are .006
and .013 for the Angoff and Nedelsky procedures, respectively. The magnitude of these average co-
variances is influenced by the degree to which similar probabilities are assigned to items. Evidently,
there is more variability over items in the probabilities assigned using the Nedelsky procedure. Fur-
ther evidence of this fact will be seen below.

Rater means. Figure 1 provides a scatterplot of the rater means (over items) for the Angoff pro-
cedure (see Table 1) and the Nedelsky procedure (see Table 3). The reader can verify that the correla-
tion in Figure 1 is —.052; and it can be shown that the covariance (in terms of the random effects vari-
ance components in Table 7) is 6*(r) + 6*(r1)/n; = —.0002 + .0071/126 = —.0001. Clearly, there is little,
if any, linear relationship between the two procedures in terms of the five rater means.? Note that this
result is not influenced by the difference in the grand means (Xs) for the two procedures.

It appears from Figure 1, however, that there are two clusters of raters—Raters 2 and 3 and
Raters 1, 4, and 5. Given the small numbers of raters involved, it cannot be said that there is a strong
correlation among raters within clusters, but Figure 1 certainly does not preclude this possibility. In
any case, Raters 2 and 3 are outstanding in that they assign relatively low probabilities using the Ned-
elsky procedure and relatively high probabilities using the Angoff procedure.

Rater standard deviations. Figure 2 provides a scatterplot of the statistics 5(X..) for each rater,
by both procedures. Recall that for a given rater and procedure, 6(X.) is the standard deviation of the

*By definition, a variance component must be positive; however, estimates of variance components are occasionally negative.
When a negative estimate occurs, sometimes it is advisable to treat it as zero (see Cronbach et al., 1972, and Brennan, 1977),
and at other times it is best to leave the estimate unchanged (see Sirotnik, 1970). Here, 6%(r) is not set to zero because it is a
mathematical fact that an observed covariance of the type in Figure 1 is exactly 6*(r) + 6*i)/n,, as shown by Cronbach et al.
(1972, chap. 8).
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Figure 1
Rater Means (Over Items) for
Probability of a Correct Response
using Nedelsky and Angoff Procedures
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probabilities assigned to items. The standard deviations for the Nedelsky procedure are somewhat
higher than those for the Angoff procedure, which is consistent with the variance components for
items and interaction being higher for the Nedelsky procedure. Again, however, Rater 3 and, to some
extent, Rater 2 appear to be different from the other three raters. Specifically, for both procedures,
Raters 2 and 3 exhibit less variability in the probabilities they assign to items.

Figure 2
Standard Deviations, for each

Rater, of the Probabilities Assigned
to Items Using Nedelsky and Angoff Procedures
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Figure 3 provides a frequency polygon for the average (over raters) of the probabilities assigned to
items by both procedures; and Figure 4 provides a frequency polygon of the standard deviation of the
probabilities assigned to items. Consistent with previously discussed results, Figure 3 indicates that
the modal probability (interval) is considerably higher for the Angoff procedure. Also, consistent with
previous results, Figure 4 indicates that there is somewhat more variability in the probabilities as-
signed to items using the Nedelsky procedure. Most importantly, however, the Nedelsky standard de-
viations in Figure 4 are bimodal. As discussed below, this bimodality is not an artifact of these data; it
is a result that is virtually guaranteed by the Nedelsky procedure.

Recall that for each rater the probability assigned to an item by the Nedelsky procedure is the in-
verse of the number of noneliminated distractors. For the four-alternative items used in this study,
this method of assigning probabilities implies that the only (inferred) probabilities that can be as-
signed to an item using the Nedelsky procedure are .25, .33, .50, and 1.00. In particular, note that
there can be no probability between .50 and 1.00. Now, consider the probabilities assigned by raters
to an item. If all raters assign probabilities in the range .25 to .50, the standard deviation will be rela-
tively small; and, of course, if they all assign probabilities of 1.00, the standard deviation will be zero.
However, the standard deviation will be relatively large when some raters assign a probability of 1.00
and other raters assign probabilities of .50 or lower.

The bimodality in Figure 4, then, seems almost certainly a direct result of having only a small
number of unequally spaced probabilities with the Nedelsky procedure. Furthermore, this peculiar
characteristic of the probability scale is a plausible explanation for the estimates of the variability of
X being higher for the Nedelsky procedure than for the Angoff procedure (see Tables 2 and 4). Also,
the restricted nature of the Nedelsky probability scale may account for the differences in the means
for the two procedures, at least to some extent. To examine these issues in more detail, consider
Tables 8 and 9.

Figure 3
Frequency Polygon of the Means
(Over Raters) of the Probabilities

Assigned to Items
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Figure 4
Frequency Polygon of the Standard

Deviations (Over Raters) of the
Probabilities Assigned to I[tems

SOA —— NEDELSKY

40 1

30 1

NUMBER OF ITEMS

201

T ¥
\%
W

o

T
o =
~ N
w [5)]

.
T
NN
\‘
o o

S0 >
SV A

STANDARD DEVIATION OF PROBABILITIES
ASSIGNED TO ITEM

Tables 8 and 9 provide relative frequency distributions, over items, for the probabilities assigned
using the Angoff and Nedelsky procedures, respectively. Inspection of these tables reveals several
points of interest. First, no rater assigned probabilities below .20 using the Angoff procedure. This
implies that the range of probabilities for the two procedures is about the same; consequently, differ-
ential restriction in range is not a factor of importance in the data. Second, for the Nedelsky proce-
dure, on the average, probabilities below .50 were used for 28% of the items, whereas for the Angoff
procedure, they were used for only 7% of the items. Third, for the Angoff procedure, on the average,
probabilities in the range .60 to .95 were used with 53% of the items, whereas the Nedelsky procedure
precluded use of such probabilities.

These points, and visual inspection of Tables 8 and 9, reveal a consistent tendency for raters to as-
sign more homogeneous probabilities using the Angoff procedure. Furthermore, it appears that a
rater who uses a probability of .33 or .50 with the Nedelsky procedure is very likely to use a somewhat
higher probability when given the opportunity to do so with the Angoff procedure.

Operationalizing Conceptions of Minimum Competence

There are many ways in which the Nedelsky and Angoff procedures appear to be very similar. For
example, they both involve raters’ judgments about individual items; they both yield, directly or in-
directly, a matrix of rater-by-item probabilities; and, given this matrix, the computational process for
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Table 8
Raters' Freguency Distributions of Probability
of Correct Response Using Angoff Procedure

Probability
of Correct Raters
Re sponsea 1 2 3 4 5 Average
<.20 .00 .00 .00 .00 .00 .00
(.20, .25) .03 .02 .00 .07 .06 .04
(.30, .35) .02 .00 .00 .02 .06 .02
(.40, .45) .00 .00 .06 .00 .00 .01
(.50, .55) .42 .24 .19 .44 .36 .33
(.60, .65) .01 .04 .31 .00 .01 .07
(.70, .75) .26 .33 .23 .37 .31 .30
(.80, .85) .01 .23 .20 .00 .02 .09
(.20, .95) .12 .07 .01 .10 .04 .07
>.95 .13 .08 .00 .00 .15 .07
r .67 .72 .66 .62 .65 .66

%Raters were constrained to report their probabilities in units
of .05.

arriving at a cutting score is the same for both procedures. The procedures obviously differ in that
probabilities are directly elicited in the Angoff procedure, whereas probabllmes are inferred from
eliminated distractors in the Nedelsky procedure.

It is also possible that the two procedures differ, to some extent, in the way they technically allow
a rater to operationalize a conception of minimum competence. In the Angoff procedure, to arrive at
a probability, a rater might conceptualize a group of minimally competent persons and reflect upon
what proportion would get the item correct. Alternatively, for the Angoff procedure, a rater might

Table 9
Raters' Frequency Distributions of Probability
of Correct Response Using Nedelsky Procedure

Probability
of Correct Raters
Response 1 2 3 4 5 Average
.25 .06 .06 .07 .05 .00 .05
.33 .16 .25 .42 .16 .17 .23
.50 .40 .52 .43 .57 .60 .50
1.00% .38 .18 .08 .22 .23 .22
ir .64 .53 .45 .57 .58 .56

a ‘ s
Analyses of these data used a probability of 0.99, rather than
1.00, for coding convenience.
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conceptualize a single minimally competent person and reflect upon what proportion of the time this
person would correctly respond to the item if it were administered a large number of times.

For the Nedelsky procedure, however, there are only as many distinct probabilities that can be as-
signed (indirectly) as there are alternatives to the item, and these probabilities are not equally spaced.
Logic suggests, therefore, that neither of the above two conceptualizations works very well with the
Nedelsky procedure. For example, if a rater believes that 75% of a group of minimally competent per-
sons would get an item correct, the rater cannot eliminate some number of alternatives that will yield
a probability of .75. Technically, the rater cannot even report the average number of alternatives that
a group of minimally competent persons would eliminate, unless this number is an integer.

It seems, then, that the Nedelsky procedure constrains a rater to conceptualize minimum compe-
tency in terms of the performance of a single person on a single administration of an item, with the
additional constraint that this person will respond based upon a process of eliminating distractors.
There is no compelling empirical evidence to suggest that examinees (specifically, minimally compe-
tent examinees) generally respond to an item based upon a process of eliminating distractors, even
though this process is frequently recommended to potential examinees. However, even if examinees
do respond in this manner, there still seem to be relatively clear differences in the conceptualization
of minimal competence implicit in the Angoff and Nedelsky procedures.

This study cannot directly address the extent to which different conceptualizations of minimum
competency may have influenced the study’s results; and it is judged unlikely that raters gave this
matter a great deal of conscious consideration. Nevertheless, any cutting score procedure necessitates
some conceptualization of minimum competence; it seems likely that the conceptualizations are dif-
ferent for the Angoff and Nedelsky procedures; and evaluators are probably well advised to consider
such differences in choosing a cutting score procedure in a given context.

Cutting scores other than X

It is important to note that, throughout this paper, it has been assumed that the cutting score, X,
resulting from either procedure is the mean of X,, for all raters who participated in the study. For ex-
ample, it was pointed out that Raters 2 and 3 in this study appeared to be different from the other
three raters. However, it was not suggested that they be eliminated from the study for the purposes of
calculating a cutting score. In the opinion of the authors, unless there is clear evidence that a rater did
not adhere to the intended procedure, it is probably not generally advisable to eliminate atypical
raters in determining the cutting score. (It is assumed, of course, that raters were chosen carefully in
the first place). However, if an atypical rater were eliminated, it would be best to redo analyses using
only the remaining raters. This suggestion is made because the elimination of an atypical rater, after
the study is completed, probably implies a change in the conceptualization of the intended population
of raters. _

Reconciliation process. Sometimes, rather than using X as the cutting score, it is suggested that
a cutting score be determined by a reconciliation process. For example, after the five raters in this
study completed the Angoff procedure, they were instructed, as a group, to reconcile their differences
on each item (see Table 1). One typical result of using a reconciliation process is that certain raters
tend to dominate, or to influence unequally, the reconciled ratings. This is indeed what happened in
the study of the Angoff procedure, as indicated by the high correlations between the actual and recon-
ciled ratings for Raters 1 and 2. The effect of this dominance by Raters 1 and 2 is that the reconciled
cutting score (.70) is quite a bit different from X (.66).

There is a certain logic in using a reconciliation process that appears to be compelling. It might
be argued that the ideal of using either the Nedelsky or the Angoff procedure is for raters to agree on
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every item. Therefore, why not force them to concur? One argument against this logic is that forced
consensus is not agreement, although forced consensus may effectively hide disagreement. Also, a
reconciliation process does not guarantee that the same cutting score will result each time a study is
replicated. If a study is replicated a large number of times with different raters, the average recon-
ciled cutting score might be considerably different from the average X or Ain Equation 1; however,
there could be as much, or even more, variability in the distribution of reconciled cutting scores as
there is in the distribution of X’s. This does not imply, however, that a reconciliation procedure
should necessarily be avoided; rather, use of a reconciliation procedure involves complexities over and
above those encompassed by either the Nedelsky or the Angoff procedure.

Nedelsky s cutting score. 'When Nedelsky originally described his procedure, he did not actually
suggest using X (or n.X) as a cutting score. Instead, the cutting score he suggested using is Mg, +
korp. Nedelsky's discussion of Mgy, k, and ofp is somewhat confusing. However, it appears that M;p
is intended to be the mean test score for a group of “‘border-line” examinees, only (Nedelsky, 1954, p.
S); osp is the standard deviation of this distribution; and k is an a priori defined constant used to clas-
sify these “border-line”’ examinees into passing and failing examinees. Since Nedelsky suggests using
n.X as an estimate of My, it is clear that his cutting score will equal n.X only if k is defined as zero or
Op iS Zero.

It is not clear to these authors why M,,, + ko, would be used as a cutting score if there actually
were test scores for a known group of ‘‘borderline’”” examinees. In such a case, the test data themselves
would likely provide a reasonably sound basis for defining a cutting score independent of raters’ judg-
ments. It can be inferred, therefore, that Nedelsky probably wants a hypothetical group of borderline
examinees to be considered. It has already been argued that there may be a logical inconsistency in
conceptualizing a group of minimally competent examinees when using the Nedelsky procedure.
However, even if this issue is overlooked, the problem still exists of estimating o0%s, (a parameter for a
test score distribution) using only the raters’ probabilities.

It can be shown that the formula suggested by Nedelsky (1954, p. 12) for estimating 6% is

~o _
9 en ]Z; i Xri(l Xri)/nr [12a]

ni[i(l - X) - 6%2(r) - 62(i) - 62(ri)] ; [12b]

where X, is the (inferred) probability assigned to item / by rater . Nedelsky provides a rationale for
his estimate of 6¢,; but in the authors’ opinion, his rationale is weak in that it confounds considera-
tions of parameters and estimates. Even if his formula for estimating 6%, is accepted, the very process
of defining a cutting score as M, + ko,p, requires fairly strong assumptions and a substantial degree
of subjective judgment over and above that required to estimate the cutting score . X. Whether or not
such complexity is advisable depends upon the specific context of the cutting score decision process;
however, there are probably not many contexts in which this complexity is warranted, and the proce-
dure is easily defended.

Measurement Reliability or Dependability

The numerical results reported in this paper are for a specific experimental study only; and, as
such, these results are illustrative, rather than definitive. Nevertheless, there appear to be noticeable
differences in the means (or cutting scores) for the two procedures. Also, for each procedure, there is
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evidence of error, as reflected in the expected variances of the distributions of means over replica-
tions; and these variances frequently have considerably different magnitudes for the two procedures.
Given these results, it seems reasonable to consider their potential impact on issues of reliability, or
measurement dependability. A complete discussion of these issues is beyond the intended scope of
this paper. One relatively straightforward approach to this issue will, be considered however.

Brennan and Kane (1977a, 1977b), Kane and Brennan (1980), and Brennan (1980) discussed the
following index of dependability for a domain-referenced test:

2(p) + (u - N2
o(A) = . [13]
g2(p) + (u - A2 + g2(n)

A, in Equation 13 is identical to A in Equation 1. The other terms in Equation 13, however, are not evi-
dent from Equation 1. Rather, the other terms in Equation 13 result from a consideration of the fol-
lowing linear model for the observed response of person p to item

Y . = S R VRV VIR VI S VO U [14]
Pl H uP uJ P3

Technically, the linear models in Equations 1 and 14 are formally identical. However, different nota-
tion is used in each of them for the purpose of emphasizing that Equation 1 is applied to a rater-by-
item matrix of probabilities, whereas Equation 14 is applied to a person-by-item matrix of observed
scores.

For any meaningful joint use of Equations 1 and 14, the item universe must be the same for both
model equations, although the effect for items in Equation 1, A+, is different from the effect for items
in Equation 14, py,~. Most importantly, A and u in Equations 1 and 14 are very different. The
parameter A is the cutting score (or grand mean of the probabilities) for the population of raters and
universe of items; whereas the parameter y is the grand mean of the observed scores, Y, for the pop-
ulation of persons and the universe of items.

Using generalizability theory and the linear model in Equation 14, Brennan and Kane (1977a)
derived the following equation as an estimate of their index of dependability:

2(p) + (Y - 12 - a2(¥)

-~

e(1) = — —— ; [15]
G2(p) + (¥ - M2 - 62(Y) + 62(A)

In Equation 185,

6% (p) = [MS(p) - MS(®I)1/n; [16a]

6%(3) = [MS(3) - MS(p3) 1/, [16b]

*Brennan and Kane (1977a) also provide an easily calculated formula for ;(A) in terms of commonly used sample statistics.
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6% (pj) = MS(pi) [16c]
G2(p) = 2(j)/nj + Gz(pj)/nj ; and [164d]
2(Y) = 8?—<p)/np + 82(j>/nj + &?-(pj)/npnj . [16e]

The estimate in Equation 15 is identified as $(A) to :mphasize that it is based on the assumption
that A is somehow known, without error. This assumption is reflected in the term (Y — A in the num-
erator and denominator of Equation 15. When 4 is not known. however, and X from a particular
study is used as an estimate of A, then this term is no longer appropriate.

Furthermore, A may not simply be replaced with X in the term (Y — A)? because the expected value
of a squared quantity is not equal to the square of the expected value. Rather, the expected value of

Y -X»ris
EREI(?-§)2= Y - M2 + 620 |, [17)

if it is desired to generalize over samples of raters (R) and samples of items (/). If it is desired to gen-
eralize over samples of items only, then

£ ¥-%2=@F-n2+521xn . [18]

It follows from Equations 17 and 18 that when X is used as an estimate of 4, 6*(X) or 6*(X|R), as
appropriate, should also be subtracted from both the numerator and the denominator of Equation
15. The two resulting (modified) estimates of the index of dependability, $ (1), are as follows:

. G2(p) + (Y - X)2 - 62(Y) - §2(X)
*(X) = - —— — —— - [19]
02(p) + (Y - X)2 - G2(¥Y) - 62(X) + 52(h)

for sampling over both raters and items; and

o §2(p) + (¥ - X)2 - 52(Y) - 62(X|R)
¢ (X|R) = - — — — - [20]
G2(p) + (Y - x)2 = g2(Y) - G2(X|R) + 62(n)

for sampling over items only.

Consider now the original question that motivated the development of Equations 19 and 20,
namely, for the Nedelsky and Angoff procedures what effect do different values for X and its ex-
pected variability have on reliability or measurement dependability? Without loss of generality, con-
sideration can be restricted to $(X) in Equation 19 for generalizing over raters and items. Since o)
can be no greater than one, decreasing the numerator and denominator in Equation 15 by 6%(X) re-
sults in decreasing the magnitude of the estimate of the Brennan-Kane index. This is to be exnected,
because additional sources of error attributable to the procedure used to establish a cutting score
have been introduced.
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Furthermore, all other things being equal, the larger the magnitude of *(X), the smaller the mag-
nitude of ¢(X) Since the results suggest that 6%(X) is larger for the Nedelsky procedure, it might be ex-
pected that $(X) is smaller for the Nedelsky procedure. However, all things are not equal un-
less the cutting scores for the procedures are equal. When they are unequal the magnitude of (Y - Xy
will be different; and this difference, in turn, will affect the magnitude of ¢(X) Moreover, whether or
not higher values of X will result in higher values of (¥ — X)* depends upon the magnitude of Y. In
brief, it is not necessarily the case that lower values of 6*(X) are always associated with higher values
for estimates of measurement dependability.

Note that it has not been suggested that 6*(X|I) be considered in the context of modifying the
Brennan-Kane index. Of course, there is an equation analogous to Equations 17 and 18, namely,

;:"R(?-Eﬂ: ¥ - 02+ 2x|D [21]

in which generalization is over samples of raters only. However, in this equation, items are considered
fixed; and if 62(X|I) is incorporated into an estimate of 4>().) items must then be considered fixed in es-
timating the other variance components, too. To do so means that there is no larger universe of items
(or tests) to which it is desired to generalize; and, under such circumstances, estimates of reliability,
generalizability, or dependability for the model in Equation 14 are usually undefined.

Summary and Conclusions

Based upon an application of generalizability theory to a rater-by-item matrix of probabilities,
equations have been provided and discussed for estimating the expected variability in a cutting score
determined by the Nedelsky or Angoff procedure. The development assumes that the cutting score in
a particular study is the observed mean (probability) over raters and items and that this mean may be
viewed as an estimate of an “idealized” cutting score, defined as the mean for a population of raters
and a universe of items. In this sense, the expected variability of the observed mean is error variance
attributable to a particular application of the procedure used to define a cutting score.

This approach has been applied to data resulting from an experimental application of the Ned-
elsky and Angoff procedures by 5 raters to a 126-item test. Also, these results have been examined for
each procedure separately, and results have been compared over procedures. The results indicate that
both the cutting scores and their expected variances are considerably different for the two procedures.
It has been postulated that these differences may be explained, in whole or in part, by differences in
the ways probabilities are assigned using the two procedures or by differences in the ways minimum
competency is conceptualized. . _

Finally, the influence of different values of X, and the expected variance in the distribution of X,
on reliability, or measurement dependability, have been examined. To do so, a modification of the
Brennan-Kane index of dependability, (1) was developed. It was found that for a given value of X, an
increase in expected variance of X results in a decrease in the estimate of $(1). However, if both X and
its variance change, then the estimate of $(A) could increase, decrease, or even remain unchanged.

The numerical results reported in this paper are for a single experimental study only. As such,
these results clearly do not form a sufficient basis for a full evaluation of either the Nedelsky or the
Angoff procedure. Even so, this study does suggest that differences between these procedures may be
of greater consequence than their apparent similarities. In particular, the restricted nature of the
Nedelsky (inferred) probability scale may constitute a basis for seriously questioning the applicability
of this procedure in certain contexts.
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